Molecular Simulation

Introduction
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INntroduction

Why to use a simulation

Some examples of questions we can address
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Molecular Simulations

e Molecular dynamics: solve

equations of motion

e Monte Carlo: importance

sampling

e Calculate thermodyn
transport properties 1

amic and
‘or a

given intermolecular

notential
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Uses of Molecular Simulations

The idea for a given intermolecular potential “exactly”
compute the thermodynamic and transport properties of
the system

erstanding Molecular simulation



Why Molecular Simulations

Paul Dirac, after completing his formalism of
guantum mechanics: “The rest is chemistry...”.

NIS IS a heavy burden the shoulders of “chemistry”:
ne “rest’:

amounts to the quantitative description of the world around
us and the prediction of all every-day phenomena ranging
from the chemical reactions of small molecules to the
integrated description of living organisms.
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Intermolecular potential

The intermolecular potential can:
i

mMic the experimental system as accurate as possible:

Replace experiments (dangerous, impossible to measure,
expensive, ...)

Make a model system:

- Test theories that can not directly be tested with
experiment
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If we know/guess the “true” intermolecular potential
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Example 1: Mimic the “real world”

Critical properties of long chain hydrocarbons
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of the hydrocarbon mixtures it is convenient (=Engineering
models use them) to know the critical points of the

hydrocarbons.
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TEMPERATURE (K)

Critical points of long chain hydrocarbons
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Hydrocarbons: intermolecular potential

United-atom model

- Fixed bond length
Bond-bending

- Torsion

- Non-bonded: Lennard-Jones

u(r) = 4817

|

O

r

T
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OPLS (Jorgensen) Model
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Molecular dynamics:
press enter and see ...

A
A

Lectures on Free
Energies and Phase
Equilibrium

L

| ectures on advanced
Monte Carlo
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Molecular dynamics:
press enter and see ...
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But my system 1s
extremely small, is the
statistic reliable?

Computational issues:

How 10 O

HOow tO compute vapour-
iquid equilibrium??

eal with long chain

nydrocar

NONS”?

But C48 moves much slower

than methane (C1). Do I have
enough CPU time
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Critical Temperature and Density
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Methane storage
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Methane cars: the technological obstacle

Gasoline, 1 liter

0.036 MJ 34.2 MJ
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Methane versus gasoline

Volumetric Energy Density of Fuels
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Makal et al. Chem. Soc. Rev. 2012 41.23, 7761-7779.
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Pressure swing adsorption

Insufficient
flow

PL — 58 bar
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The deliverable capacity

o e I A 2 &

> @ V< |

Methane adsorbed Methane adsorbed
(v STPA) (v STP/V)

at tank charging at tank discharge
pPressure pressure

ARPA-E (DOE) target: 315 m3 STP methane/m3 adsorbent
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An optimal heat of adsorption?

Goal: maximize deliverable capacity

I

Methane loading (v STP/v)

| Il |
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Pressure (bar)
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Optimum Conditions for Adsorptive Storage

Suresh K. Bhatia'

Division of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072 Australia

Alan L. Myers*

Department of Chemical and Biomolecular Engineering, University of Pennsylvania,
Philadelphia, Pennsylvania 19104




In silico screening of zeolites

__MFI methane isotherms
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MFI expt’l data: Sun et al. (1998) J. Phys. Chem. B. 102(8), 1466-1473.
Zhu et al. (2000) Phys. Chem. Chem. Phys. 2(9), 1989-1995.
Force field: Dubbeldam et al. (2004) Phys. Rev. 93(8), 088302.
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In silico screening of zeolites

Optimal AH_ 45 of Bhatia and Myers
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C. Simon et al. (2014) Phys. Chem. Chem. Phys. 16 (12), 5499-5513
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Enthalpy vs. entropy

AS not the same for all materials
Wide range of AH that yields optimal material
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Can we find a material that
meets the DOE target?

Screening > 100,000 materials
zeolites

Metal organic Frameworks, MOFs (Snurr and co-
workers)

zeolitic imidazolate frameworks, ZIFs, (Haranczyk)
Polymer Porous Networks, PPNs (Haranczyk)
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Insight from the model
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—xample 3: make a model syst

My theory is RIGHT: but
Question: are attractive interactic  this experimentalist refuses

phase? to use molecules that do
_ not have any attractive
YES: Interactions

Attractive forces are needed

heories predict this ..
BUT:

There no molecules with only attractive interactioric

@
N

How to test the theory”?
\l/

4

Your theory is
WRONG it disagrees
with the experiments
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But we can simulate hard spheres ..

Sernie Alder carried out Molecular
Dynamics simulations of the freezing of

nard spheres

But, .... did the scientific community
accept this computer results as
experimental evidence ...

... during a Gordon conference it was
proposed to vote on it ...

... and It was voted against the results
of Alder
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=Xperiments are now possible

.. But not on molecules

but on colloids:
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From the following article: Erms (V um-) a

A colloidal model system with an interaction tunable from hard
sphere to soft and dipolar
Anand Yethiraj and Alfons van Blaaderen
Nature 421, 513-517 (30 January 2003)
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http://www.nature.com/nature/journal/v421/n6922/full/nature01328.html
http://www.nature.com/nature/journal/v421/n6922/full/nature01328.html

Molecular Dynamics

. Theory: MD

d’r
2
dt N
- Compute the forces on the particles —————_ 2
V

n

F=m

- Solve the equations of motion

- Sample after some timesteps

30
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Monte Carlo

Generate a set of configurations with the correct probability

Compute the thermodynamic and transport properties as

averages over all configurations
What is the correct

probability?
Statistical

Thermodynamics
How to compute these

properties from a o
simulation? e . MG
® ® ° ]”1
< L,

31
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Classical and Statistical Thermodynamics

Problem: we have a set of coordinates and velocities -what
to do with 1t?

- Statistical Thermodynamics
- The probability to find a particular configuration

Properties are expressed Iin term of averages

-ree energies

+ Thermodynamics: relation of the free energies to
thermodynamic properties
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