3. Monte Carlo Simulations

Understanding Molecular Simulation



Molecular Simulations
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solve equations of motion
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Monte Carlo Simulations

3. Monte Carlo

3.1.Introduction
3.2.5tatistical Thermodynamics (recall)

3.3.Importance sampling

3.4.Details of the algorithm
3.5.Non-Boltzmann sampling
3.6.Parallel Monte Carlo
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3. Monte Carlo Simulations

3.2 Statistical Thermodynamics
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Canonical ensemble: statistical mechanics

Hence, the probabillity to find E;:

Consider a small system that can exchange energy
with a big reservolr =1/kgT

InQ(E, E-E, )= an(E)_(alanEQ]El L

If the reservolr is very big we can ignore the higher
order terms:

nQ(E,,E-E,) E,

P(E, )=

P(E, )< exp

InQ(E) KT
Q(E, E-E,) Q(E E-E,)/Q(E) CQ(El,E—El)
SolrE) SalEE ) eE o)

E - B=1/ksT
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Summary: Canonical ensemble (N,V,T)

Partition function: i(r) N
QN,V,T A3NN' je ar

Probability to find a particular Y]

configuration: P(f3N) <€ 7

Ensemble average:

1 —BU(r) 3N —BU\r
) - AgNN!JA(")e ar™ JA(r)e AU g3
NV,T QN,V,T 'e‘ﬁ“(r) dr3V
Free energy: B o
=—INUyr
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3.Monte Carlo Simulations

3.3 Importance Sampling
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Numerical Integration
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Monte Carlo simulations

Generate M configurations using {rgN AN BN BN rgN}
Monte Carlo moves: P TE e

We can compute the average:

The probabillity to generate a

configuration in our MG i JA(fsN)PMC(r”)drgN

scheme: PMC [P (r*¥)ar™

‘Question: how to chose PMC such that
‘we sample the canonical ensemble?
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—nsemble Average

1 1 -pu(r3"
(Alr = Qur NIA™ a(r)e ™ ar

We can rewrite this using the

probabllity to find a particular (A) = f A(rgN) P(rsN) 4r3
configuration e
, o)
with P(r*")= AN

] A(r)e ™ are
et =

(Ahur = AL )P(r)

[e ) o
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Monte Carlo - canonical ensemble

Canonical ensemble: anv) _—BUrY) s
Alr " |e ar
<A>NVT - J.A(r:)’N)P(r?’N)dI’gN - J (.ezu(rgN) dr>"
it P(r3N) - e_ﬁU(rSN) 2. No need to know
A**NIQ,, - the partition function
. B B A r3N PMC r3N dr3N
Monte Carlo: A=3" A (rigN) i J (J.P’V’)C (r3N()dr2N
ience, weneed pue )= ce
i CJA(rgN)egiU(rgN)dr3N 3 JA(r3N)e3/;U(r3N)dr3N _ <A>
Cje_ﬁu(r )dr3N je_ﬁu(r )dr3N NVT
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Importance Sampling: what got lost”?
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3.Monte Carlo Simulation

3.4 Details of the algorithm
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Algorithm 1 (Basic Metropolis Algorithm)

PROGRAM mc

do 1cycl=1l,ncycl
call mcmove

1f (mod(icycl,nsamp) .eq.0)
+ call sample
enddo
end

basic Metropolis algorithm

perform ncycl MC cycles
displace a particle

sample averages

Comments to this algorithm:

1. Subroutine mcmove attempts to displace a randomly selected particle
(see Algorithm 2).

2. Subroutine sample samples quantities every nsampth cycle.
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Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle
o=int (ranf () *npart) +1 select a particle at random
call ener(x(o),eno) energy old configuration
xn=x (o) + (ranf () -0.5) xdelx give particle random displacement
call ener (xn,enn) energy new configuration
if (ranf () .lt.exp(-beta acceptance rule (2.2.1)

+ * (enn—eno)) x(0)=xn accepted: replace x (o) by xn
return
end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.

3. The ranf () is a random number uniform in [0, 1].
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Questions

How can we prove that this scheme generates the
desired distribution of configurations?

- Why make a random selection of the particle to be
displaced?

- Why do we need to take the old configuration again
How large should we take: delx?
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3.Monte Carlo Simulations

3.4.1 Detailed balance
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Questions

How can we prove that this scheme generates the
desired distribution of configurations?

- Why make a random selection of the particle to be
displaced?

- Why do we need to take the old configuration again
How large should we take: delx?

canonical ensembles
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Markov Processes

Markov Process
Next step only depends on the current state

Ergodic: all possible states can be reached by a set of
single steps

Detalled balance

3K Process will approach a limiting distribution
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—nsembles versus probability

® (o). probability to find the state o

® Ensemble: take a very large number (M) of identical
systems: N(o) = M x P(0); the total number of systems
INn the state o
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Markov Processes - Detalled Balance

K(o — n): total number of systems in our
ensemble that move o0 = n

K(oen)zN(o)xa(oen)xaco(oen)
e N(o): total number of systems in our ensemble in state o
® (o — n). a priori probability to generate a move 0 = n

® acc(o — n): probabillity to accept the move o = n
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Markov Processes - Detalled Balance

Condition of detailed bal aﬂcv”'
K(o—n)=K(n— o)

K(oan)zN(o)xa(oan)xaoc(oen)

K(neo):N(n)xa(nao)xaCC(neo)
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NV T-ensemble

In the canonical ensemble the number - u(n)
. . . L N(n) o< €
of configurations in state n is given by:

We assume that in our Monte
Carlo moves the a priori probability
to perform a move Is independent

of the configuration:

aco(oen) B N[
acc(neo) - N[

Which gives as condition for
the acceptance rule:
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Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle

o=int (ranf () *npart) +1 select a particle at random
)

call ener (x(o),eno energy old configuration
ranf () -0.5) *delx give particle random displacement

- -~ energy new configuration
() .1t.exp(-beta ™\ acceptance rule (3.2.1)
x (0) =xn / accepted: replace x (o) by xn

* {enn—eno) )

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The rant () is a random number uniform in [0, 1].
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Metropolis et al.

Many acceptance acclo—n

—|
~— | ~—ro
1
® | D

rules that satisfy: accln—o

Metropolis et al. introduced:
aco(o — n) — min(l,e_ﬁ[“(”)‘“(o)]) — min(i,e‘ﬁAU)

It:

AU<O acclo—n)=1

accept the move

T AU>0 acclo—n)=e
draw a uniform random number [0;1]
. and accept the new configuration If;
Aern ranf < e P
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3.Monte Carlo Simulation

3.4.2 Particle selection
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Questions

® How can we prove that this scheme generates the
desired distribution of configurations?

e Why make a random selection of the particle to be
displaced?

e \Why do we need to take the old configuration again®?

e How large should we take: delx?
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3.Monte Carlo Simulation

3.4.3 Selecting the old configuration
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Questions

® How can we prove that this scheme generates the
desired distribution of configurations?

e \Why make a random selection of the particle to be
displaced?

e Why do we need to take the old configuration
again?

e How large should we take: delx?
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Algorithm 2 (Attempt to Displace a Particle)

SUBROUTINE mcmove attempts to displace a particle
o=int (ranf () *npart) +1 select a particle at random
call ener (x(o),eno) energy old configuration
xn=x (o) + (ranf () -0.5) *delx give particle random displacement
call ener (xn, enn) energy new configuration
if (ranf().lt.exp(=beta — —_acceptance rule (3.2.1)

+ * (enn—-enqy” o) =xn accepted: replace : ) by xn
return B et

end

Comments to this algorithm:

1. Subroutine ener calculates the energy of a particle at the given position.
2. Note that, if a configuration is rejected, the old configuration is retained.
3. The rant () is a random number uniform in [0, 1].
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Mathematical

Transition probability
from o = n: ﬂ(oen)za(oen)xaoo(oen)

As by definition we
make a transition: Z ﬂ(o N n) —1

The probability we do not
make a move:

nlo—o0)=1- 7m(o—n)

This term = O
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Model

Let us take a spin system: * *

(with energy UT = +1 and Ul = -1)
Probability to findT: p(1)= o A)
A possible configuration:

¥4 941494 ¥ ¥

If we do not keep the old

configuration: ********

(independent of the temperature)
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Lennard Jones fluid
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3.Monte Carlo Simulation

3.4.4 Particle displacement
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Questions

® How can we prove that this scheme generates the
desired distribution of configurations?

e \Why make a random selection of the particle to be
displaced?

e \Why do we need to take the old configuration again?
e How large should we take: delx?
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Not too big Not too small
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3.Monte Carlo Simulation

3.5 Non-Boltzmann sampling

Understanding Molecular Simulation



Non-Boltzmann sampling

Ensemble average of A at J A
temperat}Jre " <A> J - ﬁ1U(r) dr
A
<A>er J‘ —~B,U(r X with 1 = e—ﬁz[u(r)—u(r)]
JA e u(r)- U(r)] dr
<A> j ﬁllf(r)e—ﬁ W)
JA o Pl g agam multiply with 1/1:

<A>NVT1 J‘e B,U(r)-B,u(r )} () dl’ je dI’JA ALrpU )] “Alr al
[ PR 500 g [ g

This gives us: < Ae—(ﬁrﬂg)u> X

\/\ A>/\/VT1 - e—(ﬁl—ﬂz)u

. N
=slJnderstanding Molecular




Non-Boltzmann sampling

Ensemble average of A at f A
temperature | 1:

o JAle
), je_ﬁ

()dr

T11s arb|trary, we can
use any value

(I’) e—[,B1U(r)—.,[32 .r)]n—ﬁzu(r) Ar

We perform a

J' A )] AU 4y s U(r)]e' simudlation at To
<A> T, J‘e | B,U(r)-BU ()]e B, andonly 1
simulation ...

But obtain an ensemble

average at T+
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P(E)

Overlap becomes very smallj
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3. Monte Carlo Simulation

3.6 Parallel Monte Carlo
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Parallel Monte Carlo

0 0
"0 ©

How to do a Monte Carlo simulation in parallel”

(trivial but works best) Use an ensemble of systems with
different seeds for the random number generator

s It possible to do Monte Carlo in parallel”?
Monte Carlo is sequentiall

We first have to know the fait of the current move
before we can continue!
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Parallel Monte Carlo - algorithm

Naive (and wrong)
1. Generate K trial configurations in parallel
2. Select out of these the one with the lowest energy

ool

P(n) - zg e—ﬁu(j)

=1

3. Accept and reject using normal Monte Carlo rule:

~ALu(n)-(o)]

acc(o —> n) =€
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Conventional acceptance rules

5900

-6000

- -6100

| "-6'2“00’

1 10 100 1000

o o
The conventional acceptance rules give a bias
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What went wrong”

Detailed balance!
K(o—>n)=K(n — o)

K(o—>n)=N(Q)<oa(o —> n)><acc(o — n)
K(n—>o0)=/NMm)<oa(n —> o)><acc(ir—> o)
acc(o—>n) N@m)y<oca(n—>o0) N(n)
acc(n —> 0) N((o)xox(o —>n) N(0)
/
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Markov Processes - Detalled Balance

Condition of detailed bal aﬂcv”'
K(o—n)=K(n— o)

K(oan)zN(o)xa(oan)xaoc(oen

)
K(neo :N(n)xa(nao)xacc(neo)
(
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K(oen)zN(o)xa(oen)xacc(oan)

A priori probability to generate

configuration n: a(o N n) —
Rosenbluth factor T
configuration n: W(”) =2 =1 © J

OC(O — n) -
A priori probability to generate ~BU(o)
configuration o: oc(n% o)= i o
Rosenbluth fact Ze™

osenbluth factor
—BU(o g§-1 —Bul(j
configuration o:; W(O): e )+21=1 e M
~BU(o)
OC(I’) — O) = ©
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XOC(I’)%O

SN oINS

(0—-n) _N(n,

)
acc(nao) N(o]xa(oen
Now with the correct a priori
probabilities to generate a configuration:

oA
(x(o — n) = W(n)
g AUlo
(x(n — o) = W(o)
This gives as acceptance rules:
) 0
acc[o —> n] B W(o) B W(n]
aoc[n — o] - ) g P W(o]
w(n)
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Conventional acceptance rules

1 10 100 1000

Modified acceptance rules remove the bias exactly
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