
Understanding Molecular Simulation

4. Molecular Dynamics

Understanding Molecular Simulation

4. Molecular Dynamics

4.1 Basics

Understanding Molecular Simulation

Molecular Simulations

➡ Molecular dynamics:
solve equations of motion

➡ Monte Carlo: importance
sampling

r1
r2
rn

r1
r2
rn

Understanding Molecular Simulation

Molecular Dynamics
4. Molecular Dynamics

4.1.Basics
4.2.Liouville formulation
4.3.Multiple time steps

Understanding Molecular Simulation

“Fundamentals”

Theory:

• Compute the forces on the particles
• Solve the equations of motion
• Sample after some # of time steps

F =md
2r
dt2

Understanding Molecular Simulation

Molecular Dynamics
3.2 Molecular Dynamics: A Program 75

Algorithm 3 (A Simple Molecular Dynamics Program)

program md simple MD program

call init initialization
t=0

do while (t.lt.tmax) MD loop
call force(f,en) determine the forces
call integrate(f,en) integrate equations of motion
t=t+delt

call sample sample averages
enddo

stop

end

Comment to this algorithm:

1. Subroutines init, force, integrate, and sample will be described in
Algorithms 4, 5, and 6, respectively. Subroutine sample is used to calculate
averages like pressure or temperature.

2. We initialize the system (i.e., we select initial positions and velocities).
3. We compute the forces on all particles.
4. We integrate Newton’s equations of motion. This step and the previ-

ous one make up the core of the simulation. They are repeated until we
have computed the time evolution of the system for the desired length
of time.

5. After completion of the central loop, we compute and print the aver-
ages of measured quantities, and stop.

Algorithm 3 is a short pseudo-algorithm that carries out a Molecular Dy-
namics simulation for a simple atomic system. We discuss the different op-
erations in the program in more detail.

3.2.1 Initialization
To start the simulation, we should assign initial positions and velocities to all
particles in the system. The particle positions should be chosen compatible
with the structure that we are aiming to simulate. In any event, the particles
should not be positioned at positions that result in an appreciable overlap
of the atomic or molecular cores. Often this is achieved by initially placing

Understanding Molecular Simulation (DRAFT - 3rd edition) Frenkel and Smit (November 7, 2017)

Understanding Molecular Simulation

Initialization
Force calculations

• Periodic boundary conditions
• Order NxN and order N algorithms,
• Truncation and shift of the potential

Integrating the equations of motion
• integration schemes

Molecular Dynamics

Understanding Molecular Simulation

4. Molecular Dynamics

4.1.1 Basics: Initialization

Understanding Molecular Simulation

76 Chapter 3. Molecular Dynamics Simulations

Algorithm 4 (Initialization of a Molecular Dynamics Program)

subroutine init initialization of MD program
sumv=0

sumv2=0

do i=1,npart

x(i)=lattice pos(i) place the particles on a lattice
v(i)=(ranf()-0.5) give random velocities
sumv=sumv+v(i) velocity center of mass
sumv2=sumv2+v(i)**2 kinetic energy

enddo

sumv=sumv/npart velocity center of mass
sumv2=sumv2/npart mean-squared velocity
fs=sqrt(3*temp/sumv2) scale factor of the velocities
do i=1,npart set desired kinetic energy and set

v(i)=(v(i)-sumv)*fs velocity center of mass to zero
xm(i)=x(i)-v(i)*dt position previous time step

enddo

return

end

Comments to this algorithm:

1. Function lattice pos gives the coordinates of lattice position i and
ranf() gives a uniformly distributed random number. We do not use a
Maxwell-Boltzmann distribution for the velocities; on equilibration it will be-
come a Maxwell-Boltzmann distribution.

2. In computing the number of degrees of freedom, we assume a three-di-
mensional system (in fact, we approximate Nf by 3N).

the particles on a cubic lattice, as described in section 2.2.2 in the context of
Monte Carlo simulations.

In the present case (Algorithm 4), we have chosen to start our run from
a simple cubic lattice. Assume that the values of the density and initial tem-
perature are chosen such that the simple cubic lattice is mechanically un-
stable and melts rapidly. First, we put each particle on its lattice site and
then we attribute to each velocity component of every particle a value that
is drawn from a uniform distribution in the interval [-0.5, 0.5]. This initial
velocity distribution is Maxwellian neither in shape nor even in width. Sub-
sequently, we shift all velocities, such that the total momentum is zero and
we scale the resulting velocities to adjust the mean kinetic energy to the de-

Understanding Molecular Simulation (DRAFT - 3rd edition) Frenkel and Smit (November 7, 2017)

Understanding Molecular Simulation

Molecular Dynamics
Initialization

• Total momentum should be zero (no external forces)
• Temperature rescaling to desired temperature
• Particles start on a lattice

Force calculations
• Periodic boundary conditions
• Order NxN algorithm,
• Order N: neighbor lists, linked cell
• Truncation and shift of the potential

Integrating the equations of motion
• Velocity Verlet
• Kinetic energy

Understanding Molecular Simulation

4. Molecular Dynamics

4.1.2 Basics: Force Calculation

Understanding Molecular Simulation

Initialization
• Total momentum should be zero (no external forces)
• Temperature rescaling to desired temperature
• Particles start on a lattice

Force calculations
• Periodic boundary conditions
• Order NxN algorithm,
• Order N: neighbor lists, linked cell
• Truncation and shift of the potential

Integrating the equations of motion
• Velocity Verlet
• Kinetic energy

Molecular Dynamics

Understanding Molecular Simulation

Understanding Molecular Simulation

Periodic boundary conditions

Understanding Molecular Simulation

4. Molecular Dynamics

4.1.2 Basics: Force Calculation - The Lennard Jones potential

Understanding Molecular Simulation

The Lennard-Jones potentials
• The Lennard-Jones potential

• The truncated Lennard-Jones potential

• The truncated and shifted Lennard-Jones potential

ULJ r() = 4ε σ
r

⎛
⎝⎜

⎞
⎠⎟

12

− σ
r

⎛
⎝⎜

⎞
⎠⎟

6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

UTR
LJ r() = ULJ r() r ≤ rc

0 r > rc

⎧
⎨
⎪

⎩⎪

UTR−SH
LJ r() = ULJ r()−ULJ rc() r ≤ rc

0 r > rc

⎧
⎨
⎪

⎩⎪

Understanding Molecular Simulation

Understanding Molecular Simulation

The Lennard-Jones potentials

Understanding Molecular Simulation

4. Molecular Dynamics

4.1.2 Basics: Force Calculation - saving CPU time

Understanding Molecular Simulation

Saving CPU-time

Cell list Verlet-list

Understanding Molecular Simulation

4. Molecular Dynamics

4.1.3 Basics: Equations of Motion

Understanding Molecular Simulation

70 Chapter 4. Molecular Dynamics Simulations

Algorithm 6 (Integrating the Equations of Motion)

subroutine integrate(f,en) integrate equations of motion
sumv=0
sumv2=0
do i=1,npart MD loop

xx=2*x(i)-xm(i)+delt**2*f(i) Verlet algorithm (4.2.3)
vi=(xx-xm(i))/(2*delt) velocity (4.2.4)
sumv=sumv+vi velocity center of mass
sumv2=sumv2+vi**2 total kinetic energy
xm(i)=x(i) update positions previous time
x(i)=xx update positions current time

enddo
temp=sumv2/(3*npart) instantaneous temperature
etot=(en+0.5*sumv2)/npart total energy per particle
return
end

Comments to this algorithm:

1. The total energy etot should remain approximately constant during the sim-
ulation. A drift of this quantity may signal programming errors. It therefore
is important to monitor this quantity. Similarly, the velocity of the center of
mass sumv should remain zero.

2. In this subroutine we use the Verlet algorithm (4.2.3) to integrate the equa-
tions of motion. The velocities are calculated using equation (4.2.4).

similarly,

Summing these two equations, we obtain

or
(4.2.3)

The estimate of the new position contains an error that is of order ,
where is the time step in our Molecular Dynamics scheme. Note that the

Understanding Molecular Simulation

Equations of motion

r t + Δt() = r t()+ dr t()
dt

Δt +
d2r t()
dt2

Δt2

2!
+O Δt3()

We can make a Taylor expansion for the positions:

The simplest form (Euler):

v t + Δt() = v t()+mdf t()
dt

Δt

r t + Δt() = r t()+ v t()Δt +O Δt2()

We can do better!

Understanding Molecular Simulation

r t + Δt() = r t()+ dr t()
dt

Δt +
d2r t()
dt2

Δt2

2!
+
d2r t()
dt2

Δt3

3!
+O Δt4()

We can make a Taylor expansion for the positions:

When we add the two:

Verlet algorithm

r t − Δt() = r t()− dr t()
dt

Δt +
d2r t()
dt2

Δt2

2!
−
d2r t()
dt2

Δt3

3!
+O Δt4()

r t + Δt()+ r t − Δt() = 2r t()+ d
2r t()
dt2

Δt2 +O Δt4()

r t + Δt() = 2r t()− r t − Δt()+ f t()Δt
2

m
+O Δt4()

no need for
velocitiesnumerically not

ideal

Understanding Molecular Simulation

Velocity Verlet algorithm

Verlet algorithm:

v t + Δt() = v t()+ Δt
2m
f t + Δt()+ f t()⎡⎣ ⎤⎦

r t + Δt() = 2r t()− r t − Δt()+ f t()Δt
2

m
+O Δt4()

r t + Δt() = r t()+ v t()Δt + f t()Δt
2

2m
+O Δt4()

to see the equivalence:

r t +2Δt() = 2r t + Δt()− r t()+ v t + Δt()− v t()⎡⎣ ⎤⎦Δt + f t + Δt()− f t()⎡⎣ ⎤⎦
Δt2

2m

r t() = r t + Δt()− v t()Δt − f t()Δt
2

2m

r t +2Δt() = r t + Δt()+ v t + Δt()Δt + f t + Δt()Δt
2

2m

adding the two

with v t + Δt() = v t()+ Δt
2m
f t + Δt()+ f t()⎡⎣ ⎤⎦

r t +2Δt() = 2r t + Δt()− r t()+ f t + Δt()Δt
2

m

Understanding Molecular Simulation

Lyaponov instability

r1 0(),!,rN 0(),p1 0(),!,pN 0()()MD: reference trajectory
with initial condition:
MD: compare: r1 0(),!,rN 0(),p1 0(),!,pi 0()+ ε ,pj 0()− ε ,!,pN 0()()

ε = 10−10

Understanding Molecular Simulation

4. Molecular Dynamics

4.2 Liouville Formulation

Understanding Molecular Simulation

the dot above, ḟ,
implies time derivative Liouville formulation

Let us consider a function that f which depends on the
positions and momenta of the particles: f pN ,rN()

!f = ∂f
∂r

⎛
⎝⎜

⎞
⎠⎟
!r + ∂f

∂p
⎛
⎝⎜

⎞
⎠⎟
!p

We can “solve” how f depends on time:

Define the Liouville operator:
iL ≡ !r ∂

∂r
⎛
⎝⎜

⎞
⎠⎟
+ !p ∂

∂p
⎛
⎝⎜

⎞
⎠⎟

the time dependence follows from: df
dt

= iLf
with solution:

f = eiLtf 0()
beware: the solution is
equally useless as the
differential equation

Understanding Molecular Simulation

In an ideal world it would be less useless:
iL ≡ !r ∂

∂r
⎛
⎝⎜

⎞
⎠⎟
+ !p ∂

∂p
⎛
⎝⎜

⎞
⎠⎟

Let us look at half the equation iLr ≡
∂
∂r

⎛
⎝⎜

⎞
⎠⎟
!r

f = eiLrtf 0()
which has as solution:

ex = 1 + x + x
2

2!
+ x

3

3!
+!Taylor expansion:

eiLrtf 0() = 1 + iLrt + 12 iLrt()2 + 13! iLrt()3 +…⎡

⎣
⎢

⎤

⎦
⎥f 0()

eiLrtf 0() = 1 + !r 0()t ∂
∂r

⎛
⎝⎜

⎞
⎠⎟
+ 1
2
!r 0()t()2 ∂

∂r
⎛
⎝⎜

⎞
⎠⎟

2

+…
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
f 0()

f 0+ !r 0()t() = f 0()+ !r 0()t ∂f 0()
∂r

⎛

⎝
⎜

⎞

⎠
⎟ +
1
2
!r 0()t()2 ∂f 0()

∂r

⎛

⎝
⎜

⎞

⎠
⎟

2

+!

Hence: eiLrtf 0() = f 0+ !r 0()t()

the operator iLr
gives a shift of
the positions

Understanding Molecular Simulation

The operation iLr gives a shift of the positions
iL ≡ !r ∂

∂r
⎛
⎝⎜

⎞
⎠⎟
+ !p ∂

∂p
⎛
⎝⎜

⎞
⎠⎟

Similarly for the operator iLp iLp ≡
∂
∂p

⎛
⎝⎜

⎞
⎠⎟
!p

f = eiLptf 0()
which has as solution:

Taylor expansion:

eiLptf 0() = 1 + iLpt + 12 iLpt()2 + 13! iLpt()3 +…⎡

⎣
⎢

⎤

⎦
⎥f 0()

eiLptf 0() = 1 + !p 0()t ∂
∂p

⎛
⎝⎜

⎞
⎠⎟
+ 1
2
!p 0()t()2 ∂

∂p
⎛
⎝⎜

⎞
⎠⎟

2

+…
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
f 0()

f 0+ !p 0()t() = f 0()+ !p 0()t ∂f 0()
∂p

⎛

⎝
⎜

⎞

⎠
⎟ +
1
2
!p 0()t()2 ∂f 0()

∂p

⎛

⎝
⎜

⎞

⎠
⎟

2

+!

Hence: eiLptf 0() = f 0+ !p 0()t()

the operator iLp
gives a shift of
the momenta

Understanding Molecular Simulation

The operation iLr gives a shift of the
positions:

… and the operator iLp a shift of the
momenta:

This would have been useful if the
operators would commute

eiLtf 0,0() = e iLr+iLp()tf 0,0() ≠ eiLrteiLptf 0,0()

eiLrtf 0,0() = f 0,0+ !r 0()t()

eiLptf 0,0() = f 0+ !p 0()t,0()

Trotter expansion:

eA+B ≠ eAeB
we have the non-commuting operators A and B:

then the following expansion holds:

eA+B = limP→∞ e
A
2Pe

B
Pe

A
2P()P

Understanding Molecular Simulation

We can apply the Trotter expansion:

eiLrΔtf p t(),r t()() = f p t(),r t()+ !r t()Δt()

eiLptf 0,0() = f 0+ !p 0()t,0()
eA+B = limP→∞ e

A
2Pe

B
Pe

A
2P()P

Δt = t
P

iLrt
P

= iLrΔt
iLpt
2P

= iLp
Δt
2

eiLpΔt 2f p t(),r t()() = f p t()+ !p t()Δt2 ,r t()⎛
⎝⎜

⎞
⎠⎟

gives us a shift of the position:
r t + Δt()→ r t()+ !r t()Δt

gives us a shift of the momenta:
p t + Δt()→ p t()+ !p t()Δt2

eiLrtf 0,0() = f 0,0+ !r 0()t()

These give as operations:

Understanding Molecular Simulation

We can apply the Trotter expansion
to integrate M time steps: t=M x Δt

eiLp
Δt
2

f t() = eiLtf 0() = eiLp Δt2eiLrΔteiLp Δt2()M f 0()

iLrΔt

iLp
Δt
2

r t + Δt()→ r t()+ !r t()Δt
p t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ p t()+ !p t()Δt2

These give as operations:

p Δt
2

⎛
⎝⎜

⎞
⎠⎟
→ p 0()+ !p 0()Δt2

eiLp
Δt
2

eiLrΔt r Δt()→ r 0()+ !r Δt
2

⎛
⎝⎜

⎞
⎠⎟
Δt

p Δt()→ p Δt
2

⎛
⎝⎜

⎞
⎠⎟
+ !p Δt()Δt2which gives after one step

p 0()→ p 0()+ f 0()+ f Δt()⎡⎣ ⎤⎦
Δt
2

r 0()→ r 0()+ !r Δt
2

⎛
⎝⎜

⎞
⎠⎟
Δt = r 0()+ v 0()Δt + f 0()Δt

2

2m

Understanding Molecular Simulation

which gives after one step

p 0()→ p 0()+ f 0()+ f Δt()⎡⎣ ⎤⎦
Δt
2

r 0()→ r 0()+ !r Δt
2

⎛
⎝⎜

⎞
⎠⎟
Δt = r 0()+ v 0()Δt + f 0()Δt

2

2m

Velocity Verlet algorithm
r t + Δt() = r t()+ v t()Δt + f t()Δt

2

2m

v t + Δt() = v t()+ Δt
2m
f t + Δt()+ f t()⎡⎣ ⎤⎦

Understanding Molecular Simulation

vx=vx+delt*fx/2

x=x+delt*vx
Call force(fx)

vx=vx+delt*fx/2

Call force(fx)
Do while (t<tmax)

enddo

Velocity Verlet
algorithm: eiLp

Δt
2eiLrΔteiLp

Δt
2

iLrΔt : r t + Δt()→ r t()+ v t()Δt

iLp
Δt
2
: v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ f t()Δt2

iLp
Δt
2
: v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ f t()Δt2

iLrΔt : r t + Δt()→ r t()+ v t()Δt

iLp
Δt
2
: v t + Δt()→ v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
+ f t + Δt()Δt2

Understanding Molecular Simulation

Liouville formulation

Velocity Verlet algorithm r t + Δt() = r t()+ v t()Δt + f t()Δt
2

2m
v t + Δt() = v t()+ Δt

2m
f t + Δt()+ f t()⎡⎣ ⎤⎦

Transformations:
iLp Δt 2 : r t()→ r t()

v t()→ v t()+ f t()Δt 2m

Jp = Det
1 0

∂f
∂r

⎛
⎝⎜

⎞
⎠⎟
Δt
2m

1
= 1

iLrΔt : r t + Δt()→ r t()+ v t()Δt
v t()→ v t()
Jr = Det

1 Δt
0 1

= 1

Three subsequent coordinate transformations in either r
or r of which the Jacobian is one: Area preserving

Understanding Molecular Simulation

4. Molecular Dynamics

4.3 Multiple Time Steps

Understanding Molecular Simulation

Multiple time steps

What to do with “stiff” potentials?

• Fixed bond-length: constraints (Shake)
• Very small time step

Understanding Molecular Simulation

We can split the force is the stiff part and the
more slowly changing rest of the forces:

This allows us to split the Liouville operator:

Now we can make another Trotter expansion: δt=Δt/m

iLrΔt : r t + Δt()→ r t()+ v t()Δt
iLp

Δt
2
: v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ f t()Δt2

f t() = fShort t()+ fLong t()

iLt = iLrt + iLpShortt + iLpLong

The conventional Trotter expansion:

iLt = iLpLong Δt 2 iLr + iLpShort⎡⎣ ⎤⎦Δt iLpLong Δt 2⎡
⎣

⎤
⎦
M

iLr + iLpShort⎡⎣ ⎤⎦Δt = iLpShort δ t 2 iLrδ t iLpShort δ t 2⎡⎣ ⎤⎦
m

Understanding Molecular Simulation

The algorithm to solve the equations of motion

The steps are first iLpLong then m times iLpShort/iLr
followed by iLpLong again

f t() = fShort t()+ fLong t()

We now have 3 transformations:

iLt = iLpLong Δt 2 iLr + iLpShort⎡⎣ ⎤⎦Δt iLpLong Δt 2⎡
⎣

⎤
⎦
M

iLr + iLpShort⎡⎣ ⎤⎦Δt = iLpShort δ t 2 iLrδ t iLpShort δ t 2⎡⎣ ⎤⎦
m

iLpLong
Δt
2
: v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ fLong t()Δt2

iLpShort
δ t
2
: v t + δ t

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ fShort t()δ t2

iLrδ t : r t +δ t()→ r t()+ v t()δ t

Understanding Molecular Simulation

vx=vx+ddelt*fx_short/2

x=x+ddelt*vx
Call force_short(fx_short)

vx=vx+ddelt*fx_short/2

Call force(fx_long,f_short)

Do ddt=1,n

enddo

vx=vx+delt*fx_long/2

iLpLong
Δt
2
: v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ fLong t()Δt2

iLpShort
δ t
2
: v t + δ t

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ fShort t()δ t2

iLrδ t : r t +δ t()→ r t()+ v t()δ t

iLpShort
δ t
2
: v t + δ t

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ fShort t()δ t2

Understanding Molecular Simulation

