1 THE PROBLEM WITH QUOTES
FOUND ON THE INTERNET IS

THAT THEY ARE OFTEN
NOT TRUE.

-ABRAHAM LINCOLN

Understanding Molecular Simulation:
Lecture 4: Computer “Measurements”

Daan Frenkel, U Cambridge



Computer “measurements”
1. What and what not ?

2. How?



Simulations are used to predict observable
properties, or to test theoretical predictions

To this end, we must measure observables
In simulations.

Measurements in a computer simulation
resemble experimental measurements:



It is easy to spend an entire course on
simulation measurements.

So this lecture will only present a few
(hopefully important) examples.

Even so, | will run out of time, but
please feel free to ask/comment.



First a general comment

We discuss Classical simulations, based on the
Gibbs formulation of Statistical Mechanics (1902),
I.e. before Quantum Mechanics was developed.

Gibbs never used, nor needed Planck’s constant.

Therefore: Planck’s constant can never appear in any
observable that is computed classically.

(Question: so how about the de Broglie thermal wavelength A ?)



Also: the indistinguishability of identical

qguantum particles is irrelevant for classical
calculations...

Not even for the factor 1/N! in the partition
function?

No, not even for that.



Where does the factor N! come from?



The Gibbs Paradox



Thus, it seems that the 1/N! term is absolutely necessary- to resolve the paradox. This means that
only a correct quantum mechanical treatment of the ideal gas gives rise to a consistent entropy.

could only later be identified with Planck’s constant h. The indistinguisha-
bility of particles of the same kind, which had to be introduced in order to
avoid the Gibbs’ paradoz,! got a firm logical basis only after the invention of

quantum theory. The observed distribution of black-body radiation could

~ .

least one nucleon mass). Hence the distinction between identical and non-
identical molecules is completely unambiguous in a quantum-mechanieal
description. The Gibbs paradox thus foreshadowed already in the last
century conceptual difficulties that were resolved satisfactorily only by the
advent of quantum mechanics.

It is not possible to understand classically why we must divide ) _(E) by N!

to obtain the correct counting of states. The reason is inherently quantum
mechanical. Quantum mechanically,atoms are inherently indistinguishablein the
following sense: A state of the gas is described by an N-particle wave function,
which is either symmetric or antisymmetric with respect to the interchange of any




t This becomes particularly evident if we consider the classical partition function (integral
over states) as the limit of the quantum partition function. In the latter the summation is
over all the different quantum states, and there is no problem (remembering that, because
of the principle of symmetry of wave functions in quantum mechanics, the quantum state
is unaffected by interchanges of identical particles).

From the purely classical viewpoint the need for this interpretation of the statistical
integration arises because otherwise the statistical weight would no longer be multiplicative,
and so the entropy and the other thermodynamic quantities would no longer be additive.




In statistical mechanics this dependence is obtained by inserting a
factor 1/N! in the partition function. Quantum mechanically this factor
enters automatically and in many textbooks that is the way in which
it is justified. My point is that this is irrelevant: even in classical
statistical mechanics it can be derived by logic — rather than by the somewhat

3yt Specifically I take exception

mystical arguments of Gibbs ° and Planck.
to such statements as: "It is not possible to understand classically why we

must divide by N1 to obtain the correct counting of states’f’,5 and: "Classical
statistics thus leads to a contradiction with experience even in the range in

which quantum effects in the proper sense can be completely neglected”.6




ENTER JAYNES:

“Usually, Gibbs’ prose style conveys his meaning in
a sufficiently clear way...”

“... using no more than twice as many words as
Poincaré or Einstein would have used to say the
same thing”

“But occasionally he delivers a sentence with
a ponderous unintelligibility that seems to
challenge us to make sense out of it...”



GIBBS’s SENTENCE:

“Again, when such gases have been mixed,
there is no more Iimpossibility of the
separation of the two kinds of molecules in
virtue of their ordinary motion in the
gaseous mass without any especial external
influence, than there is of the separation of
a homogeneous gas into the same two parts
into which it has once been divided, after
these have these have once been mixed”












Treat as gas of N labeled but otherwise id

Zaist(N) =V

Now: two such systems with N, and N, particles. In
equilibrium, we can distribute the particles over the two

systems in any way we choose (with fixed N, and N,).

(N1 4+ Ns)!
N1!INo!

Zcombined(Nla Vl; N27 VQ) — VlNl V2N2 X

NOTE:
1. all particles are different (they just have identical properties

— e.g. monodisperse colloidal spheres)
2. Z.ombineg IS NOt extensive. Not even in quantum mechanics.



When the two systems are in equilibrium, the partition function
IS maximal with respect to variations in N, (dN,=-dN,).

<81HZC> B (91I121/N1' ﬁang/Ng' —0
N

8N1 8N1 5)N2

Therefore, as soon as we are computing the chemical
potential, we MUST include the factor N!, also for labeled
particles.



Conveniently, the partition function of the
combined system then factorizes

Z.(N1, Vi, No, Vs) _ AR
(N, + Ny)! Ny !

and hence the free energy F = -kKT In (Z/N!) is extensive.

ZC(N17V17N27V2)> (Zl > (ZQ>
In = In + In
( (N1 Ng)! Nq! No!




...and, of course, really indistinguishable
particles (e.g *He atoms) can never be
distinguished, not even in principle.
Hence, exchanging them also does not lead
to a different macroscopic state.




Questions/comments/... ?



Experimental measurements: we look at the
response of a macroscopic instrument.

Simulation measurements are usually VERY
different:

We relate the observable to the coordinates

and momenta of the particles that we can
read out from our simulation.

HOW ?

That is the subject of this lecture.



First the easy ones

Density: number of particles per unit volume
p = (N/V)



Temperature - how is it defined?

Start with thermodynamics

dS = FdE + ZdV — £dN

T
Statistical mechanics: S = kp In Q(E, V, N)

We now focus on the entropy associated with
the kinetic energy:

= (g_g)V,N



Q(E,V,N) = constant x [dp~Ndé(E — .. p7/2m)

Q is a hypersphere in momentum space, with radius (2mE)'/2

The volume contained in this hypersphere is ~ (2mE)iN?2

and hence its surface area Q ~ (2mE)ldN-12

It then follows that
OlnQ(E,V,N dN—1)/2
T = ki (ZRZEYN) _ @0




Finally, we get:

kT /2 = d]\;E_l =FE/f

Where f denotes the number of degrees of
freedom (f=Nd - 1), and E is the kinetic
energy.

In most simulations with periodic boundary conditions,
both energy and momentum are conserved. Then

f=(N-1)d -1



But how do we compute the kinetic energy?

That seems a strange question. Surely, we can
compute

S |
E —= - 2
; ]
That expression is correct as the timestep At = 0.

But for a finite timestep,

1
“m < 2

9 ;> # dk B T / 2 (d = dimensionality)



The reason is very interesting, and | would love to explain it,
but it would take more time than we can spare

So, | just show an example that shows that the velocity estimate
of the kinetic energy yields incorrect temperature estimates

2046 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Eastman et al., J. Chem.
Theory Comput. 2010, 6,
< 7 2045
s 7 i s ] Gans/Shalloway, PRE 2000,
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Figure 1. A hot solvent—cold protein problem. Temperatures inSide d pI’Otein

of the protein ubiquitin (blue points) and water solvent (red . iyt . .

points) are shown as a function of simulation time. Data were (U b|qU Itl n) IS 6K h'Qher

taken from an all-atom constant energy simulation that used than that Of the Solvent !

velocity-Verlet integration with a 2 fs time step and bonds to
hydrogen constrained; more details are given in Section 3.2.

Time/ns



The reason is (roughly) that, for a discrete
(Velocity-Verlet) algorithm, v; 75 D; / m

A much better temperature estimate is obtained if
we use the relation kg1 = (p;v;)

But then v; must be computed by differentiating
a smooth interpolation of the discretized
trajectory.
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Questions/comments/... ?



Computing transport coefficients from
an EQUILIBRIUM simulation.

How?

Use linear response theory (i.e. study decay of
fluctuations in an equilibrium system)

Linear response theory in 3 slides:




Consider the response of an observable A due to
an external field fg that couples to an observable B:

H = Hqo — fpb

For simplicity, assume that (A)qg = (B)g =0
J expl-p(Ho — fBB)]A

NAA —

(A4 sp J exp[—p(Ho — fBB)]

For small f; we can linearize:
exp|—-BHg|BA
(AA) ~ 5fo
J exp[—-pHg]




Hence <AA> ~ /BfB <BA>O

We can measure the “susceptibility” of an observable A,
to an applied field couple to B by measuring the static
correlation of A and B.



Now consider a weak field that is switched off at t=0.

- N




Using exactly the same reasoning as in the static
case, we find:

(AA)(t) = Bfp(BA(1))g

The time-dependent response of A to a field that is
switched off at t=0, is determined by the time-
correlation function of A and B



Simple example: computing the mobility of a particle

B(0) = 2(0) = [°__ va(t)dt

<0, (0) >= Bf, [T dt < v (0)v(t') >



Simple example: computing the mobility of a
particle

Experiments measure mobility 1m

< Vp >=Mmf,

Hence:

m = D/kpT|= [, dt <v,(0)v,(t) >

(Einstein relation. [ questions ?])



Now the Macroscopic diffusion equations

Fick’s laws:

Oc(z,t) = O ja(zx,t)

Ot 0x
(conservation law)
. 0c(xz,t
0x

(constitutive law)



Combine:

0 c(x,t) D82 c(x,t) — 0
ot O 2

Initial condition:

c(x,0) = 6(x)

Solve:



Compute mean-squared width:

2(15) /dm c(z,t)x?




2
t
%/dm r2c(z,t) = D/daz a728 (=, )

O 2
|

d <:132(t)>
dt

Integrating the left-hand side by parts:



Or: 2D = |IIm

This is how Perrin measured the diffusion
coefficient of Brownian particles



Az (t) = /O Cat ().

2
2D = |IIim 8<x (t>>

t— 00 Ot

<:B2(t)> — <(/Ot dt’ vx(t’)>2>




((fer )=
— /ot /Ot dt'dt” <’Ua;(t/)vzv(t”)>

— 2 /O t /o ’ dt’ dt” <va;(t/)va;(t”)>.

<vx(t/)vx(t”)> — <vx(t’ _ t”)va;(O)> .



t
2D = lim 2 [ dt” <vm(t _ t”)fux(O)>

t— 00 0O

D :/O dr (v (7)v2(0))

("Green-Kubo relation”)

But we already derived this, using linear
response theory (with m = D/kgT)



lllustration:
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Figure 4.6: (left) Mean-squared displacement Ar(t)? as a function of the
simulation time t. Note that for long times, Ar(t)? varies linearly with t.
The slope is then given by 2dD, where d is the dimensionality of the system
and D the self-diffusion coefficient. (right) Velocity autocorrelation function
(v(0) - v(t)) as a function of the simulation time t.

WARNING: Diffusion coefficients have very large
finite-size effects, which only decay as 1/N3



Other examples of Green-Kubo relations:

shear viscosity

e I AR OLIO}

N

1

ny p— Z (mzvf?}g —|— 5 Z xijfy(”'“ij))
1=1 171



Other example: thermal conductivity

1 OO
= | dt (GE(0)5E@)

e_ @ 22 (e
Jz d_z 2<mz“z+2 (ZJ))

1=1 JF1



Note:

Neither the stress, nor the heat current are
uniquely defined.

For non-pairwise additive potentials (e.g. in
ab-initio simulations), this ambiguity becomes
very important.



Other example: electrical conductivity

1 o0
ve =g Jo @ (EOE®)

N
= ) qv;.
i=1



Questions/comments/... ?



Sampling observable quantities:

Example 2: the radial distribution function g(r)

g(r) = the average density at distance r from a particle,

divided by the bulk density. In an ideal gas, g(r)

1

o o O /. e 04
LALLM A i L A4 1 M { | ‘ i _ i
.v.-uw“...h.-\..‘w % || @ o \ : ®/
INREES el L 90— 8
.,-ro...oa *ssl ;
(VI 3 I ] E @
d‘ | J .‘.’. .V‘ s
3 SRR Ll ® &
‘tee %b.‘t’ho oS by 2 'Y =
smihesioat ° _
RO e
$13 A H I —8
R sr e AR T——
‘ wu«.-n— AR X M2 IetT0e ...nﬂu... 9
ISPt et 1 :r...&v....\..“. Y
¢ ® ' :
W.f-\ & 30800 0 .uo..oum" theiee
L0 o -
ﬂas



What could be simpler than computing a
radial distribution function?

Just make a histogram of the densities
as a function of distance

r

The noise is determined by Poisson statistics.



Can we do better?

Yes

D. Borgis et al. Mol Phys 111, 3486 (2013)
D. de las Heras & M. Schmidt, Phys Rev
Lett 120, 218001 (2018)



We start from:

g(r) = /dr <LL(5rrw>

1=1 j5+#1

Now, note that:

1 1
5(1‘ — rij) — ——Ar

47 ‘I'—I‘Z'j‘



Integrate by parts, using

Vi = _vm — _I_vTj

and

V,. e~ BUEY) ﬁFie—ﬁU(rN)

F,is the force acting on particle i



We then obtain:

g(r) —1=nh(r) =

r
df J .~ (F; — F,
v [ (3t S wem)

1=1 j#1

But /dr g1 '
‘I‘Z]—I'S r

is like the field at r; due to a unit charge uniformly
distributed over a sphere around the origin, with
radius r.




Hence:

_ I
/dr = —=-0(r;; — 1)

|rzy —r| i

and therefore

NOTE: we do not assume pairwise additivity



3r Free lunch ? =

L L | N | N |
0 | 2 3 4
r (o)

Figure 1. Radial distribution function obtained for a single equi-
librated configuration of a Lennard-Jones liquid composed of 864
particles using either the force approach, Equation (6), or the
standard histogram technique, with a grid spacing Ar = 0.005¢.
The dashed blue line indicates the converged result after 10,000
simulation steps. -



More impressive: works for very short ab-initio MD runs
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Figure 3. Oxygen—oxygen radial distribution function averaged
over 100 configurations extracted from a DFT-MD trajectory with
128 water molecules at ambient liquid conditions. The dashed
blue line indicates the converged result obtained by averaging
over 36,800 configurations.



Questions/comments/... ?



Scattering experiments and the structure factor:
The intensity of the scattered radiation (X-rays, neutrons,

light ...) with wave-vector q=211/A is proportional to
l(q) = <|A(q)|*> with:

N iq-r;
Aq) ~ X bilg)e
If b(q) is constant, we can factor it our and we get

Alq) ~ Y, €97 = [dr Y, 0(r —ry)eiaT
— f dI‘,O(I‘)qu'r



= Ju [y dr dr’ [{p(r)p(r)))— < p >Z|era =)

In isotropic liquids: <,0(I'),0(I'/)> = ,029(‘1' — I'/D

And hence:
S(q) = p Jy dr [g(r) — 1]e’

That looks great: we can determine the structure
factor S(q) from g(r)

DON'T



Always use:

S(q) = + [{|p(a)]?) — |(p(a))|?]

Why ?

Because truncating g(r) in the Fourier transform may
lead to spurious oscillations (even negative values) of
S(q) — and S(q) is a variance, and hence non-negative.



Sampling observable
guantities:

Pressure



1. Thermodynamic relation:

7= - (g_XF/)N,T

2. Statistical mechanical relation:

F = —kBTan(N, V, T)

With (for atomic systems):

Q(N,V,T) = A3NNvde' exp|—(U(r )]




Introduce “scaled” coordinates:

s. =1,/ L

_ v N N
QN,V.T) = i [ ds™ exp[—pu(s™)]



Then:

dIn VY [dsN exp[—puU(sM)]
oV

P:]{?BT

b NkgT 09I [ds" %X‘S[_ﬁu(SN)]



auUN)y X auENyor; s ou

OV Pt or, OV | (8V)S7;,N,T

8125 1 8LSZ' 1
pu— S,L'
oV 3L2 0L 3L2

G é\f: UEN) 1
ov. =~ dr, 3V
=1 t
NkgT oln [ds? exp[—puU(sM)]
- kT

%4 oV



_ NEkgT
Vv

P

fsV SN, D 5 expl- UM ((2), )
- [ dsN exp[—puU(sN)] OV /si/ N

Y

NkBT Al GZ/I(I'N) I, oU
=y 2 " or 3V _<(8_)Si>NT
i=1 YT ’

_U)S’i>NT

Y

e
|
2
<%
~
% -
/\
)=
@H-"
@"3
~—
|
N
S|



P

For pairwise additive forces:

JF1

Then

__ NkpT | 1 é‘f:
vV 3V




NkpT . 1 N
b= 3v< 2 fij'ri>

i,j=1,i7]
i and j are dummy variable hence:
N N
>, fiyri= ) firy
1,J=1,1%7 gi=1,57%1
And we can write

N 1 N
> firi=o 3 (fij it i)
i i=1,i%] ji=1,j7i



But as action equals reaction (Newton’s 3 law):
fzj — —f

]
And hence
N N
> (frit o) = 3 (i)
Ji=1,j71 ji=1,j71i
Inserting this in our expression for the pressure,
we get:
NkgT | 1 al
P = | 2. fijory
vV oV

i,j=1,i%]
Where I';; =TI; — I'j
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Equation of state of a Lennard-Jones fluid.



What to do if you cannot use the virial

expression?

P — oF  F(V-AV)—F((V)
o Vv AV

AV — 0

_ o, T RQNV-AVIT)/Q(N,V.T)

AV

N
Use: Q(N,V,T) = /\3‘;\7]\” /dsN exp[—AU(s™)]

V—AV)Né—BAU>

P = —kBTln<( v

AV — 0

AV



Heat capacity from energy fluctuations:

o, — 9F _ (OF (3_5>_ 1 oK
V=oar ~ \ag)\aT) T kpT203

Use the Stat Mech expression for E:

o OlnQ\ fdedrNH(pN,rN)e_BH o
E — (W) — fdedrNe_BH T <H>

Then it follows that:

Cy = kBlT2 (825151&262) — kBlT2 (<H2> - <H>2)

In words: the heat capacity follows from the natural
fluctuations in the energy




There exist similar "fluctuation expressions” for the

compressibility, for the elastic moduli of solids, for

electrical and magnetic susceptibility, and much
more.

However,you can also compute C,, directly from

Cy = (%)N,V



Questions/comments/... ?



Measurements are subject to statistical noise.

We need to know how long we must simulate to
achieved the desired accuracy.

Consider an observable A (e.g. the pressure)

In an MD simulation of length 7, we
determine a finite-time average:

A, =2 [ dt A(t)

T

We expect: the longer 1 the more accurate the estimate.



The variance in A Is:

0?(4) = (A7) — (4;)°

= L [ [y dtdt’ ([A(t) — (A)] [A®') — (A)])

where 2% = f() dt gj((é))




1.0
Area: T4

CA(t)
CA(O)

<A>

o2 (A) (2t /7.)< >

(4)°

T .
ote, number of independent measurements




Errors in transport coefficients

We can compute transport coefficients, using
Green-Kubo relations of the form:

: t
Laa=limyo [, dt' (A(0)A(t))
For example, the self-diffusion coefficient is given by

D = lim; o0 [ dt’ (v5(0)v, ("))

For definiteness, we will consider the diffusion.



In any finite simulation, we compute:

D(t) = [} dt' (v, (0)va(t))

It would seem that we get a better estimate of D
by choosing a larger value of ¢

... but this is not true, because the error in D(t)
grows with t.

oh = (D)%) — (D(t))*

How to estimate O'%(t) ?



2

Thi) = <(f§ dt'vm<o>vm<t'>)2> — {(Jy dt' v (0)0. (1))
Note that:

2
<f(;5 dt’vx(O)vx(t’)> ~ D?
That is easy. But how about:

((Js e a(00a(®)) ) = it dt” (02000 ()0 0)0s(e")

We can simplify the quartic term if
the fluctuations in v, are Gaussian:



(Ve (0) vz (") Ve (0) vz (7))

¢

Then, if velocity fluctuations decay on a timescale 1,<<t:
Jo @t fy dt” (v (0)ua(t vz (0)va (1)) ~

2D? + (v2(0)) (2Dt)



And finally:
0%(t> = (D(t)*) — (D(t))* ~

2D? + (v2(0)) 2Dt — D?
D? + 2Dtk = D% + 2D% L

Here 1, is the correlation time of the velocity
auto-correlation functions.



Note that:

2

o)
b =142

applies to the case where we sample the velocity
auto-correlation function only once.

In practice, we sample many times. Typically,
for a run of length t., , we sample t, /T, times.

Then

2
°D(t) __ Ty | 9_t

D2 trun




/ Noise starts

to dominate

i Int



Surface tension:
dF = —SdT — PdV + pudN + ~vdA
Sample with thickness t and width W: A=2S=2Wt= 2AWt

Height H = H/A
P M——
" | OF :
| (a_A)T,V,N — ;

/A

Volume
W x Hxt
Constant

Surface area
2S
changes



The calculation is much the same as for the pressure, and
we obtain:

N
V= % <$:7;—1 yjjfi [fij;zzij o fij;aﬁ$ij]>

This expression can be further simplified, but | will not do
that.

Note: this expression does not work for solid-liquid (or
solid-solid) interfaces:

(%) =v+A4(5%) =t




This was an introductory lecture to Computer
Measurements.

Many of you probably knew most of it already.

However, | stressed a few points that are not widely
appreciated:



The value of Planck’s constant cannot affect the
outcome of any observable that is computed
classically. Hence, the value of thermal de Broglie
wavelength cannot affect your results. NOTE: if a
system can undergo chemical reactions, h will be
important.

The 1/N! has nothing to do with the quantum
indistinguishability of particles.

The use of E,;,, = 1/2 mvZ may lead to incorrect
temperature estimates

The stress and heat flux are not uniquely defined



Green-Kubo integrals: longer integration is not
better

The radial distribution function of a system in
equilibrium can be computed more accurately (and
without binning) by using an expression based on
the forces acting on particles.

It is dangerous to compute the structure factor S(q)
by Fourier transforming g(r)

The surface free-energy of a (structured) solid-
liquid interface cannot be computed using the
difference between the parallel and perpendicular
components of the stress tensor.



There are two types
of people in this world:

1.) Those who can extrapolate
from incomplete data

Thank You !



HAPPILY EVER AFTER? NN
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Questions/comments/... ?



