
Understanding Molecular Simulation

3. Monte Carlo Simulations

Understanding Molecular Simulation

Molecular Simulations

➡ Molecular dynamics:
solve equations of motion

➡ Monte Carlo: importance
sampling

r1
r2
rn

r1
r2
rn

Understanding Molecular Simulation

Monte Carlo Simulations
3. Monte Carlo

3.1.Introduction
3.2.Statistical Thermodynamics (recall)
3.3.Importance sampling
3.4.Details of the algorithm
3.5.Non-Boltzmann sampling
3.6.Parallel Monte Carlo

Understanding Molecular Simulation

3. Monte Carlo Simulations

3.2 Statistical Thermodynamics

Understanding Molecular Simulation

Canonical ensemble: statistical mechanics

Consider a small system that can exchange energy
with a big reservoir

Hence, the probability to find E1:

E1

lnΩ E1,E − E1() = lnΩ E()− ∂lnΩ
∂E

⎛
⎝⎜

⎞
⎠⎟
E1 +!

=1/kBT

lnΩ E1,E − E1()
lnΩ E() = −

E1
kBT

If the reservoir is very big we can ignore the higher
order terms:

P E1() = Ω E1,E − E1()
Ω Ei ,E − Ei()i∑

=
Ω E1,E − E1() Ω E()
Ω Ei ,E − Ei() Ω E()i∑

= C
Ω E1,E − E1()

Ω E()

P E1()∝ exp −
E1
kBT

⎡

⎣
⎢

⎤

⎦
⎥ ∝ exp −βE1⎡⎣ ⎤⎦

β=1/kBT

Understanding Molecular Simulation

Summary: Canonical ensemble (N,V,T)

Partition function:

Probability to find a particular
configuration:

Free energy:

QN,V ,T =
1

Λ3NN!
e
−
U r()
kBT dr3N∫

P r3N()∝ e−
U r3N()
kBT

βF = − lnQNVT

Ensemble average:

A
N,V ,T

=

1
Λ3NN!

A r()e−βU r()dr3N∫
QN,V ,T

=
A r()e−βU r()dr3N∫
e

−βU r()
dr3N∫

Understanding Molecular Simulation

3.Monte Carlo Simulations

3.3 Importance Sampling

Understanding Molecular Simulation

Numerical Integration

Understanding Molecular Simulation

Monte Carlo simulations

Generate M configurations using
Monte Carlo moves:

r1
3N ,r2

3N ,r3
3N ,r4

3N ,!,rM
3N{ }

We can compute the average:

The probability to generate a
configuration in our MC
scheme: PMC

A =
A r3N()PMC r3N()dr3N∫
PMC r3N()dr3N∫

Question: how to chose PMC such that
we sample the canonical ensemble?

Ā =
1
M

M

∑
i=1

A (r3N
i)

Understanding Molecular Simulation

Ensemble Average

A
NVT

= 1
QNVT

1
N!Λ3N

A r3N()e−βU r3N()dr3N∫

We can rewrite this using the
probability to find a particular
configuration

P r3N() = e
−βU r3N()

Λ3NN!QNVT

A
NVT

= A r3N()P r3N()dr3N∫

with

A
NVT

= A r3N()P r3N()dr3N∫ =
A r3N()e−βU r3N()dr3N∫
e
−βU r3N()dr3N∫

Understanding Molecular Simulation

2. No need to know
the partition function

1. No need
to know C

Monte Carlo - canonical ensemble
Canonical ensemble:

P r3N() = e
−βU r3N()

Λ3NN!QNVT

with

A
NVT

= A r3N()P r3N()dr3N∫ =
A r3N()e−βU r3N()dr3N∫
e
−βU r3N()dr3N∫

Monte Carlo: A = A ri
3N()i=1

M∑ A =
A r3N()PMC r3N()dr3N∫
PMC r3N()dr3N∫

Hence, we need
to sample: PMC r3N() = Ce−βU r3N()

A =
C A r3N()e−βU r3N()dr3N∫
C e

−βU r3N()dr3N∫
=
A r3N()e−βU r3N()dr3N∫
e
−βU r3N()dr3N∫

= A
NVT

Understanding Molecular Simulation

Importance Sampling: what got lost?

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.4 Details of the algorithm

Understanding Molecular Simulation (3rd edition)

Monte Carlo simulations Chapter | 3 63

Algorithm 1 (Core of Metropolis MC code)

program MC basic Metropolis algorithm
for 1 ≤ itrial ≤ ntrial do perform ntrial MC trial moves

mcmove trial move procedure
if (itrial % nsamp) == 0 then % denotes the Modulo operation

sample sample procedure
endif

enddo
end program

Specific Comments (for general comments, see p. 7)

1. Function mcmove attempts to displace a randomly selected particle
(see Algorithm 2).

2. Function sample samples observables every nsample-th trial move.

exp[−βU(rN)]. In the standard implementation of the approach introduced by
Metropolis et al. [6], we use the following scheme:

1. Select a particle at random,7 and calculate its contribution U(rN) to the en-
ergy of the system.8

2. Give the particle a random displacement, r ′ = r + ", and calculate its new
potential energy U(r′N).

3. Accept the move from rN to r′N with probability

acc(o → n) = min
(

1, exp{−β[U(r′N) − U(rN)]}
)

. (3.3.1)

An implementation of this basic Metropolis scheme is shown in Algorithms 1
and 2.

3.3.2 Technical details

Computing averages in Monte Carlo simulations can be accelerated using a
number of tricks. Ideally, schemes to save computer time should not affect the
results of a simulation in a systematic way, but that is often not completely true.

7 Selecting particles at random is standard practice in MC because other choices yield algorithms
that do not satisfy detailed balance. Interestingly, the original Metropolis algorithm [6] moved parti-
cles sequentially, and hence violated detailed balance. It did, however, satisfy the balance condition.
In section 13.4.4, we will discuss how breaking detailed balance may speed up the convergence of
MC simulations. An explicit description of trial moves involving a particle selected at random can
be found in the 1957 paper by Wood and Parker [69].
8 This is straightforward for pairwise additive interactions. However, for systems with many-body
interactions, it would be that part of the potential energy of the system that depends on the coordinate
of the selected particle. In the worst case, this may simply be the total potential energy of the system.

Understanding Molecular Simulation (3rd edition)

64 PART | I Basics

Algorithm 2 (Monte Carlo trial displacement)

function mcmove Metropolis MC trial move

i=int(R*npart)+1 select random particle with
1 ≤ i ≤ npart

eno = ener(x(i),i) eno: energy particle i at
“old” position x(i)

xn=x(i)+(R-0.5)*delx trial position xn for particle i

enn = ener(xn,i) enn: energy of i at xn
if R < exp[-β*(enn-eno)] then Metropolis criterion Eq. (3.3.1)

x(i)=xn if accepted, x(i) becomes xn
endif

end function

Specific Comments (for general comments, see p. 7)

1. npart: number of particles. x(npart) position array. T = 1/β, maximum
steps size = 0.5*delx

2. The function ener(x): computes the interaction energy of a particle at posi-
tion x, using the approach shown in Algorithm 5.

3. R generates a random number uniformly between 0 and 1
4. int(z) returns the integer part of z
5. Note that, if a configuration is rejected, the old configuration is retained.

The main reason is that simulations of macroscopic systems are not feasible:
we, therefore, carry out simulations on microscopic (hundreds to millions of
particles) systems. The properties of such finite systems are often slightly, but
sometimes very different from those of macroscopic systems. Similarly, even
for moderately-sized systems, it is often advantageous to avoid explicit calcu-
lation of very weak intermolecular interactions between particles that are far
apart. In both cases, the effect of these approximations can be mitigated, as we
discuss below. But, whatever the situation, the key point is that we should be
aware of possible systematic errors introduced by time-saving tricks and correct
them wherever possible.

Many of the time-saving devices that we discuss below are similar for MC
and MD simulations. Rather than repeat the present section in the chapter on
MD, we shall refer in our discussion below to both types of simulations when-
ever this is relevant. However, we will not yet assume that the reader is familiar
with the technical details of MD simulations. The only feature of MD that, at
this stage, is relevant for our discussion is that in MD simulations, we must
compute the forces acting on all particles.

Understanding Molecular Simulation

Questions

• How can we prove that this scheme generates the
desired distribution of configurations?

• Why make a random selection of the particle to be
displaced?

• Why do we need to take the old configuration again?
• How large should we take: delx?

Understanding Molecular Simulation

3.Monte Carlo Simulations

3.4.1 Detailed balance

Understanding Molecular Simulation

canonical ensembles

Questions

• How can we prove that this scheme generates the
desired distribution of configurations?

• Why make a random selection of the particle to be
displaced?

• Why do we need to take the old configuration again?
• How large should we take: delx?

Understanding Molecular Simulation

Markov Processes

Markov Process
• Next step only depends on the current state
• Ergodic: all possible states can be reached by a set of

single steps
• Detailed balance

Process will approach a limiting distribution

Understanding Molecular Simulation

Ensembles versus probability

• P(o): probability to find the state o

• Ensemble: take a very large number (M) of identical
systems: N(o) = M x P(o); the total number of systems
in the state o

Understanding Molecular Simulation

Markov Processes - Detailed Balance

o n
K(o→n)

• N(o) : total number of systems in our ensemble in state o

• α(o → n): a priori probability to generate a move o → n

• acc(o → n): probability to accept the move o → n

K(o → n): total number of systems in our
ensemble that move o → n

K o→ n() = N o()×α o→ n()× acc o→ n()

Understanding Molecular Simulation

Markov Processes - Detailed Balance

o nK(o→n)

K(n→o)

Condition of detailed balance:

K o→ n() = N o()×α o→ n()× acc o→ n()
K o→ n() = K n→ o()

K n→ o() = N n()×α n→ o()× acc n→ o()
acc o→ n()
acc n→ o() =

N n()×α n→ o()
N o()×α o→ n()

Understanding Molecular Simulation

NVT-ensemble

In the canonical ensemble the number
of configurations in state n is given by:

Which gives as condition for
the acceptance rule: acc o→ n()

acc n→ o() =
e−βU n()

e−βU o()

N n()∝ e−βU n()

We assume that in our Monte
Carlo moves the a priori probability
to perform a move is independent
of the configuration:

α o→ n() =α n→ o() =α
acc o→ n()
acc n→ o() =

N n()×α n→ o()
N o()×α o→ n() =

N n()
N o()

Understanding Molecular Simulation (3rd edition)

64 PART | I Basics

Algorithm 2 (Monte Carlo trial displacement)

function mcmove Metropolis MC trial move

i=int(R*npart)+1 select random particle with
1 ≤ i ≤ npart

eno = ener(x(i),i) eno: energy particle i at
“old” position x(i)

xn=x(i)+(R-0.5)*delx trial position xn for particle i

enn = ener(xn,i) enn: energy of i at xn
if R < exp[-β*(enn-eno)] then Metropolis criterion Eq. (3.3.1)

x(i)=xn if accepted, x(i) becomes xn
endif

end function

Specific Comments (for general comments, see p. 7)

1. npart: number of particles. x(npart) position array. T = 1/β, maximum
steps size = 0.5*delx

2. The function ener(x): computes the interaction energy of a particle at posi-
tion x, using the approach shown in Algorithm 5.

3. R generates a random number uniformly between 0 and 1
4. int(z) returns the integer part of z
5. Note that, if a configuration is rejected, the old configuration is retained.

The main reason is that simulations of macroscopic systems are not feasible:
we, therefore, carry out simulations on microscopic (hundreds to millions of
particles) systems. The properties of such finite systems are often slightly, but
sometimes very different from those of macroscopic systems. Similarly, even
for moderately-sized systems, it is often advantageous to avoid explicit calcu-
lation of very weak intermolecular interactions between particles that are far
apart. In both cases, the effect of these approximations can be mitigated, as we
discuss below. But, whatever the situation, the key point is that we should be
aware of possible systematic errors introduced by time-saving tricks and correct
them wherever possible.

Many of the time-saving devices that we discuss below are similar for MC
and MD simulations. Rather than repeat the present section in the chapter on
MD, we shall refer in our discussion below to both types of simulations when-
ever this is relevant. However, we will not yet assume that the reader is familiar
with the technical details of MD simulations. The only feature of MD that, at
this stage, is relevant for our discussion is that in MD simulations, we must
compute the forces acting on all particles.

Understanding Molecular Simulation

Metropolis et al.

Many acceptance
rules that satisfy:

Metropolis et al. introduced:

 ΔUo→n

If:

draw a uniform random number [0;1]
and accept the new configuration if:

acc o→ n()
acc n→ o() =

e−βU n()

e−βU o()

acc o→ n() =min 1,e−β U n()−U o()⎡⎣ ⎤⎦() =min 1,e−βΔU()
ΔU < 0 acc(o→ n) = 1

ranf < e−βΔU

ΔU > 0 acc(o→ n) = e−βΔU
accept the move

If:

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.4.2 Particle selection

Understanding Molecular Simulation

Questions

• How can we prove that this scheme generates the
desired distribution of configurations?

• Why make a random selection of the particle to be
displaced?

• Why do we need to take the old configuration again?

• How large should we take: delx?

Understanding Molecular Simulation

Detailed
Balance

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.4.3 Selecting the old configuration

Understanding Molecular Simulation

Questions

• How can we prove that this scheme generates the
desired distribution of configurations?

• Why make a random selection of the particle to be
displaced?

• Why do we need to take the old configuration
again?

• How large should we take: delx?

Understanding Molecular Simulation (3rd edition)

64 PART | I Basics

Algorithm 2 (Monte Carlo trial displacement)

function mcmove Metropolis MC trial move

i=int(R*npart)+1 select random particle with
1 ≤ i ≤ npart

eno = ener(x(i),i) eno: energy particle i at
“old” position x(i)

xn=x(i)+(R-0.5)*delx trial position xn for particle i

enn = ener(xn,i) enn: energy of i at xn
if R < exp[-β*(enn-eno)] then Metropolis criterion Eq. (3.3.1)

x(i)=xn if accepted, x(i) becomes xn
endif

end function

Specific Comments (for general comments, see p. 7)

1. npart: number of particles. x(npart) position array. T = 1/β, maximum
steps size = 0.5*delx

2. The function ener(x): computes the interaction energy of a particle at posi-
tion x, using the approach shown in Algorithm 5.

3. R generates a random number uniformly between 0 and 1
4. int(z) returns the integer part of z
5. Note that, if a configuration is rejected, the old configuration is retained.

The main reason is that simulations of macroscopic systems are not feasible:
we, therefore, carry out simulations on microscopic (hundreds to millions of
particles) systems. The properties of such finite systems are often slightly, but
sometimes very different from those of macroscopic systems. Similarly, even
for moderately-sized systems, it is often advantageous to avoid explicit calcu-
lation of very weak intermolecular interactions between particles that are far
apart. In both cases, the effect of these approximations can be mitigated, as we
discuss below. But, whatever the situation, the key point is that we should be
aware of possible systematic errors introduced by time-saving tricks and correct
them wherever possible.

Many of the time-saving devices that we discuss below are similar for MC
and MD simulations. Rather than repeat the present section in the chapter on
MD, we shall refer in our discussion below to both types of simulations when-
ever this is relevant. However, we will not yet assume that the reader is familiar
with the technical details of MD simulations. The only feature of MD that, at
this stage, is relevant for our discussion is that in MD simulations, we must
compute the forces acting on all particles.

Understanding Molecular Simulation

Mathematical

Transition probability
from o → n:

As by definition we
make a transition:

The probability we do not
make a move:

π o→ n() =α o→ n()× acc o→ n()

π o→ n()n∑ = 1

π o→ o() = 1 − π o→ n()n≠0∑

This term ≠ 0

Understanding Molecular Simulation

Model

Let us take a spin system:
(with energy U↑ = +1 and U↓ = -1)

If we do not keep the old
configuration:

(independent of the temperature)

P ↑() = e−βU ↑()Probability to find↑:

A possible configuration:

Understanding Molecular Simulation

Lennard Jones fluid

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.4.4 Particle displacement

Understanding Molecular Simulation

Questions

• How can we prove that this scheme generates the
desired distribution of configurations?

• Why make a random selection of the particle to be
displaced?

• Why do we need to take the old configuration again?

• How large should we take: delx?

Understanding Molecular Simulation

Not too big Not too small

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.5 Non-Boltzmann sampling

Understanding Molecular Simulation

Non-Boltzmann sampling

A
NVT1

=
A r()e−β1U r()dr∫
e−β1U r()dr∫

β1=1/kBT1

A
NVT1

=
A r()e−β1U r()dr∫
e−β1U r()dr∫

× 1
1 1 = e−β2 U r()−U r()⎡⎣ ⎤⎦

A
NVT1

=
A r()e−β1U r()e−β2 U r()−U r()⎡⎣ ⎤⎦ dr∫
e−β1U r()e−β2 U r()−U r()⎡⎣ ⎤⎦ dr∫

A
NVT1

=
A r()e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫
e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫ =

e−β2U r()dr∫ A r()e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫
e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr e−β2U r()dr∫∫

A
NVT1

=
Ae− β1−β2()U

NVT2

e− β1−β2()U
NVT2

Ensemble average of A at
temperature T1:

with

again multiply with 1/1:

This gives us:

Understanding Molecular Simulation

Non-Boltzmann sampling

A
NVT1

=
A r()e−β1U r()dr∫
e−β1U r()dr∫

A
NVT1

=
A r()e−β1U r()dr∫
e−β1U r()dr∫

× 1
1 1 = e−β2 U r()−U r()⎡⎣ ⎤⎦

A
NVT1

=
A r()e−β1U r()e−β2 U r()−U r()⎡⎣ ⎤⎦ dr∫
e−β1U r()e−β2 U r()−U r()⎡⎣ ⎤⎦ dr∫

A
NVT1

=
A r()e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫
e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫

=
e−β2U r()dr∫ A r()e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr∫
e− β1U r()−β2U r()⎡⎣ ⎤⎦e−β2U r()dr e−β2U r()dr∫∫

Ensemble average of A at
temperature T1:

with

again multiply with 1/1:

Why are we not
using this?

T1 is arbitrary, we can
use any value

and only 1
simulation …

We perform a
simulation at T2

But obtain an ensemble
average at T1

A
NVT1

=
Ae− β1−β2()U

NVT2

e− β1−β2()U
NVT2

Understanding Molecular Simulation (3rd edition)

T1

T2

T5

T3

T4

E

P(
E)

Overlap becomes very small

Understanding Molecular Simulation

3. Monte Carlo Simulation

3.6 Parallel Monte Carlo

Understanding Molecular Simulation

Parallel Monte Carlo

How to do a Monte Carlo simulation in parallel?
• (trivial but works best) Use an ensemble of systems with

different seeds for the random number generator
• Is it possible to do Monte Carlo in parallel?

• Monte Carlo is sequential!
• We first have to know the fait of the current move

before we can continue!

Understanding Molecular Simulation

Parallel Monte Carlo - algorithm

Naive (and wrong)
1. Generate k trial configurations in parallel
2. Select out of these the one with the lowest energy

3. Accept and reject using normal Monte Carlo rule:

P n() = e−βU n()

e−βU j()
j=1

g∑

acc o→ n() = e−β U n()−U o()⎡⎣ ⎤⎦

Understanding Molecular Simulation

Conventional acceptance rules

The conventional acceptance rules give a bias

Understanding Molecular Simulation

What went wrong?

Detailed balance!

acc() () () ()
acc() () () ()

o n N n n o N n
n o N o o n N o

α
α

→ × →= =
→ × →

() ()K o n K n o→ = →
() () () acc()K o n N o o n o nα→ = × → × →
() () () acc()K n o N n n o n oα→ = × → × →

Understanding Molecular Simulation

Markov Processes - Detailed Balance

o nK(o→n)

K(n→o)

Condition of detailed balance:

K o→ n() = N o()×α o→ n()× acc o→ n()
K o→ n() = K n→ o()

K n→ o() = N n()×α n→ o()× acc n→ o()
acc o→ n()
acc n→ o() =

N n()×α n→ o()
N o()×α o→ n() =

N n()
N o()?

Understanding Molecular Simulation (3rd edition)

K o→ n() = N o()×α o→ n()× acc o→ n()

α o→ n() = e−βU n()

e−βU j()
j=1

g∑
W n() = e−βU j()

j=1

g∑
Rosenbluth factor
configuration n:

α o→ n() = e
−βU n()

W n()

α n→ o() = e−βU o()

e−βU j()
j=1

g∑
W o() = e−βU o() + e−βU j()

j=1

g−1∑
Rosenbluth factor
configuration o:

A priori probability to generate
configuration n:

A priori probability to generate
configuration o:

α n→ o() = e
−βU o()

W o()

Understanding Molecular Simulation (3rd edition)

acc o→ n()
acc n→ o() =

N n()×α n→ o()
N o()×α o→ n()

Now with the correct a priori
probabilities to generate a configuration:

α o→ n() = e
−βU n()

W n()

α n→ o() = e
−βU o()

W o()

acc o→ n()
acc n→ o() =

e−βU n() × e
−βU o()

W o()
e−βU o() × e

−βU n()

W n()
=
W n()
W o()

This gives as acceptance rules:

Understanding Molecular Simulation

Conventional acceptance rules

Modified acceptance rules remove the bias exactly

