

3. Monte Carlo Simulations

Molecular Simulations

\Rightarrow Molecular dynamics:
solve equations of motion

Monte Carlo: importance sampling

Monte Carlo Simulations

3. Monte Carlo
3.1. Introduction
3.2.Statistical Thermodynamics (recall)
3.3.Importance sampling
3.4.Details of the algorithm
3.5.Non-Boltzmann sampling
3.6.Parallel Monte Carlo

3. Monte Carlo Simulations

3.2 Statistical Thermodynamics

Canonical ensemble: statistical mechanics

Consider a small system that can exchange energy with a big reservoir

$$
\ln \Omega\left(E_{1}, E-E_{1}\right)=\ln \Omega(E)-\left(\frac{\partial \ln \Omega}{\partial E}\right) E_{1}+\cdots
$$

If the reservoir is very big we can ignore the higher order terms:

Hence, the probability to find E_{1} :

$$
\frac{\ln \Omega\left(E_{1}, E-E_{1}\right)}{\ln \Omega(E)}=-\frac{E_{1}}{k_{B} T}
$$

$$
\begin{aligned}
& P\left(E_{1}\right)=\frac{\Omega\left(E_{1}, E-E_{1}\right)}{\sum_{i} \Omega\left(E_{i}, E-E_{i}\right)}=\frac{\Omega\left(E_{1}, E-E_{1}\right) / \Omega(E)}{\sum_{i} \Omega\left(E_{i}, E-E_{i}\right) / \Omega(E)}=C \frac{\Omega\left(E_{1}, E-E_{1}\right)}{\Omega(E)} \\
& P\left(E_{1}\right) \propto \exp \left[-\frac{E_{1}}{k_{B} T}\right] \propto \exp \left[-\beta E_{1}\right] \quad \beta=1 / k_{B} T
\end{aligned}
$$

Summary: Canonical ensemble (N,V,T)

Partition function:

$$
Q_{N, V, T}=\frac{1}{\Lambda^{3 N} N!} \int e^{-\frac{U(r)}{k_{B} T}} d r^{3 N}
$$

Probability to find a particular configuration:

$$
P\left(r^{3 N}\right) \propto e^{-\frac{\left(r^{3 N}\right)}{k_{B} T}}
$$

Ensemble average:

$$
\langle A\rangle_{N, V, T}=\frac{\frac{1}{\Lambda^{3 N} N!} \int A(r) e^{-\beta U(r)} d r^{3 N}}{Q_{N, V, T}}=\frac{\int A(r) e^{-\beta U(r)} d r^{3 N}}{\int e^{-\beta \mu(r)} d r^{3 N}}
$$

Free energy:

$$
\beta F=-\ln Q_{N T T}
$$

3.Monte Carlo Simulations

3.3 Importance Sampling

Numerical Integration

Monte Carlo simulations

Generate M configurations using Monte Carlo moves:

$$
\left\{r_{1}^{3 N}, r_{2}^{3 N}, r_{3}^{3 N}, r_{4}^{3 N}, \cdots, r_{M}^{3 N}\right\}
$$

We can compute the average:

$$
\bar{A}=\frac{1}{M} \sum_{i=1}^{M} A\left(r_{i}^{3 N}\right)
$$

The probability to generate a configuration in our MC scheme: PMc

$$
\bar{A}=\frac{\int A\left(r^{3 N}\right) P^{M C}\left(r^{3 N}\right) d r^{3 N}}{\int P^{M C}\left(r^{3 N}\right) d r^{3 N}}
$$

Question: how to chose PMC such that we sample the canonical ensemble?

Ensemble Average

$$
\langle A\rangle_{N V T}=\frac{1}{Q_{N N T}} \frac{1}{N!\Lambda^{3 N}} \int A\left(r^{3 N}\right) e^{-\beta U\left(3^{3 N}\right)} d r^{3 N}
$$

We can rewrite this using the probability to find a particular configuration

$$
\langle A\rangle_{N T T}=\int A\left(r^{3 N}\right) P\left(r^{3 N}\right) d r^{3 N}
$$

with

$$
\begin{gathered}
P\left(r^{3 N}\right)=\frac{e^{-\beta U\left(3^{3 N}\right)}}{\Lambda^{3 N} N!Q_{N N T}} \\
\langle A\rangle_{N N T}=\int A\left(r^{3 N}\right) P\left(r^{3 N}\right) d r^{3 N}=\frac{\int A\left(r^{3 N}\right) e^{-\beta U\left(3^{3 N}\right)} d r^{3 N}}{\int e^{-\beta U\left(r^{3 N}\right)} d r^{3 N}}
\end{gathered}
$$

Monte Carlo - canonical ensemble

Canonical ensemble:
with

$$
\begin{aligned}
& \langle A\rangle_{N V T}=\int A\left(r^{3 N}\right) P\left(r^{3 N}\right) d r^{3 N}=\frac{\int A\left(r^{3 N}\right) e^{-\beta U\left(r^{3 N}\right)} d r^{3 N}}{\int e^{-\beta U\left(r^{3 N}\right)} d r^{3 N}} \\
& P\left(r^{3 N}\right)=\frac{e^{-\beta U\left(r^{3 N}\right)}}{\Lambda^{3 N} N!Q_{N V T}}
\end{aligned} \begin{aligned}
& \text { 2. No need to know } \\
& \text { the partition function }
\end{aligned}
$$

Monte Carlo:

$$
\bar{A}=\sum_{i=1}^{M} A\left(r_{i}^{3 N}\right) \quad \bar{A}=\frac{\int A\left(r^{3 N}\right) P^{M C}\left(r^{3 N}\right) d r^{3 N}}{\int P^{M C}\left(r^{3 N}\right) d r^{3 N}}
$$

Hence, we need to sample:

$$
P^{M C}\left(r^{3 N}\right)=C e^{-\beta U\left(r^{3 N}\right)}
$$

$$
\bar{A}=\frac{C \int A\left(r^{3 N}\right) e^{-\beta U\left(r^{3 N}\right)} d r^{3 N}}{C \int e^{-\beta U\left(r^{3 N}\right)} d r^{3 N}}=\frac{\int A\left(r^{3 N}\right) e^{-\beta U\left(r^{3 N}\right)} d r^{3 N}}{\int e^{-\beta U\left(r^{3 N}\right)} d r^{3 N}}=\langle A\rangle_{N V T}
$$

Understanding Molecular Simulation

Importance Sampling: what got lost?

3.Monte Carlo Simulation

3.4 Details of the algorithm

Algorithm 1 (Core of Metropolis MC code)

```
program MC
    for 1 \leq itrial \leq ntrial do
        mcmove
        if (itrial % nsamp) == 0 then
            sample
        endif
    enddo
end program
```

Specific Comments (for general comments, see p. 7)

1. Function mcmove attempts to displace a randomly selected particle (see Algorithm 2).
2. Function sample samples observables every nsample-th trial move.

Algorithm 2 (Monte Carlo trial displacement)

```
function mcmove
    i=int(\mathcal{R}*npart)+1
    eno = ener(x(i),i)
    xn=x(i)+(\mathcal{R}-0.5)*delx
enn = ener(xn,i)
if \mathcal{R}<\operatorname{exp}[-\beta*(enn-eno)] then
    x(i)=xn
endif
end function
```

Metropolis MC trial move
select random particle with $1 \leq i \leq n p a r t$
eno: energy particle i at "old" position $\times(\mathrm{i})$
trial position $\times n$ for particle i
enn: energy of i at $\times n$
Metropolis criterion Eq. (3.3.1)
if accepted, x (i) becomes $\times n$

```
end function
```

Specific Comments (for general comments, see p. 7)

1. npart: number of particles. x (npart) position array. $T=1 / \beta$, maximum steps size $=0.5 * \mathrm{de} 1 \mathrm{x}$
2. The function $\mathbf{e n e r}(\mathrm{x})$: computes the interaction energy of a particle at position x, using the approach shown in Algorithm 5.
3. \mathcal{R} generates a random number uniformly between 0 and 1
4. $\operatorname{int}(z)$ returns the integer part of z
5. Note that, if a configuration is rejected, the old configuration is retained.

Questions

- How can we prove that this scheme generates the desired distribution of configurations?
- Why make a random selection of the particle to be displaced?
- Why do we need to take the old configuration again?
- How large should we take: delx?

3.Monte Carlo Simulations

3.4.1 Detailed balance

Questions

- How can we prove that this scheme generates the desired distribution of configurations?
- Why make a random selection of the particle to be displaced?
- Why do we need to take the old configuration again?
- How large should we take: delx?
canonical ensembles

Markov Processes

Markov Process

- Next step only depends on the current state
- Ergodic: all possible states can be reached by a set of single steps
- Detailed balance
* Process will approach a limiting distribution

Ensembles versus probability

- $P(o):$ probability to find the state o
- Ensemble: take a very large number (M) of identical systems: $N(0)=M \times P(0)$; the total number of systems in the state o

Markov Processes - Detailed Balance

$K(0 \rightarrow n)$: total number of systems in our ensemble that move $o \rightarrow n$

$$
K(o \rightarrow n)=N(o) \times \alpha(o \rightarrow n) \times \operatorname{acc}(o \rightarrow n)
$$

- $N(0)$: total number of systems in our ensemble in state o
- $a(o \rightarrow n)$: a priori probability to generate a move $o \rightarrow n$
- acc $(o \rightarrow n)$: probability to accept the move $o \rightarrow n$

Markov Processes - Detailed Balance

Condition of detailed balance:

$$
\begin{gathered}
K(0 \rightarrow n)=K(n \rightarrow 0) \\
K(0 \rightarrow n)=N(0) \times \alpha(0 \rightarrow n) \times \operatorname{acc}(0 \rightarrow n) \\
K(n \rightarrow 0)=N(n) \times \alpha(n \rightarrow 0) \times \operatorname{acc}(n \rightarrow 0) \\
\frac{\operatorname{acc}(0 \rightarrow n)}{\operatorname{acc}(n \rightarrow 0)}=\frac{N(n) \times \alpha(n \rightarrow 0)}{N(0) \times \alpha(0 \rightarrow n)}
\end{gathered}
$$

NVT-ensemble

In the canonical ensemble the number of configurations in state n is given by:

$$
N(n) \propto e^{-\beta U(n)}
$$

We assume that in our Monte
Carlo moves the a priori probability to perform a move is independent

$$
\alpha(o \rightarrow n)=\alpha(n \rightarrow o)=\alpha
$$ of the configuration:

$$
\frac{\operatorname{acc}(0 \rightarrow n)}{\operatorname{acc}(n \rightarrow 0)}=\frac{N(n) \times \alpha(n \rightarrow 0)}{N(0) \times \alpha(o \rightarrow n)}=\frac{N(n)}{N(0)}
$$

Which gives as condition for the acceptance rule:

$$
\frac{\operatorname{acc}(0 \rightarrow n)}{\operatorname{acc}(n \rightarrow 0)}=\frac{e^{-\beta U(n)}}{e^{-\beta U(0)}}
$$

Algorithm 2 (Monte Carlo trial displacement)

function memove $\begin{aligned} & i=\operatorname{int}(\mathcal{R} \text { *npart })+1 \\ & \text { eno }=\operatorname{ener}(x(i), i) \\ & x n=x(i)+(\mathcal{R}-0.5) * \operatorname{de} 1 x \end{aligned}$	Metropolis MC trial move select random particle with $1 \leq$ i \leq npart eno: energy particle i at "old" position $\times(\mathrm{i})$ trial position $\times n$ for particle i enn: energy of i at $\times n$
if $\mathcal{R}<\exp [-\beta *($ enn-eno) $]$ then endif end function	Metropolis criterion Eq. (3.3.1) if accepted, $\times(\mathrm{i})$ becomes $\times n$

Specific Comments (for general comments, see p. 7)

1. npart: number of particles. x (npart) position array. $T=1 / \beta$, maximum steps size $=0.5 * \mathrm{de} 1 \mathrm{x}$
2. The function $\mathbf{~ e n e r}(\mathrm{x})$: computes the interaction energy of a particle at position x, using the approach shown in Algorithm 5.
3. \mathcal{R} generates a random number uniformly between 0 and 1
4. int (z) returns the integer part of z
5. Note that, if a configuration is rejected, the old configuration is retained.

Understanding Molecular Simulation (3rd edition)

Metropolis et al.

Many acceptance rules that satisfy:

$$
\frac{\operatorname{acc}(o \rightarrow n)}{\operatorname{acc}(n \rightarrow 0)}=\frac{e^{-\beta U(n)}}{e^{-\beta U(o)}}
$$

Metropolis et al. introduced:

$$
\operatorname{acc}(0 \rightarrow n)=\min \left(1, e^{-\beta[u(n)-U(0)]}\right)=\min \left(1, e^{-\beta \Delta u}\right)
$$

If:

$$
\Delta U<0 \quad \operatorname{acc}(0 \rightarrow n)=1
$$

accept the move
If:

$$
\Delta U>0 \quad \operatorname{acc}(0 \rightarrow n)=e^{-\beta \Delta U}
$$

draw a uniform random number [0;1] and accept the new configuration if:

$$
\operatorname{ranf}<\mathrm{e}^{-\beta \Delta U}
$$

Understanding Molecular Simulation

3.Monte Carlo Simulation

3.4.2 Particle selection

Questions

- How can we prove that this scheme generates the desired distribution of configurations?
- Why make a random selection of the particle to be displaced?
- Why do we need to take the old configuration again?
- How large should we take: delx?

3.Monte Carlo Simulation

3.4.3 Selecting the old configuration

Questions

- How can we prove that this scheme generates the desired distribution of configurations?
- Why make a random selection of the particle to be displaced?
- Why do we need to take the old configuration again?
- How large should we take: delx?

Algorithm 2 (Monte Carlo trial displacement)

Specific Comments (for general comments, see p. 7)

1. npart: number of particles. x (npart) position array. $T=1 / \beta$, maximum steps size $=0.5 * \mathrm{de} 1 \mathrm{x}$
2. The function $\mathbf{e n e r}(\mathrm{x})$: computes the interaction energy of a particle at position x, using the approach shown in Algorithm 5.
3. \mathcal{R} generates a random number uniformly between 0 and 1
4. int (z) returns the integer part of z
5. Note that, if a configuration is rejected, the old configuration is retained.

Understanding Molecular Simulation (3rd edition)

Mathematical

Transition probability

 from $o \rightarrow n$:$$
\pi(o \rightarrow n)=\alpha(o \rightarrow n) \times \operatorname{acc}(o \rightarrow n)
$$

As by definition we make a transition:

$$
\sum_{n} \pi(o \rightarrow n)=1
$$

The probability we do not make a move:

$$
\pi(o \rightarrow o)=1-\sum_{n \neq 0} \pi(o \rightarrow n)
$$

Model

Let us take a spin system:
(with energy $\cup \uparrow=+1$ and $\cup \downarrow=-1$)
Probability to find \uparrow :

$$
P(\uparrow)=e^{-\beta U(\uparrow)}
$$

A possible configuration:

$$
\downarrow+\uparrow \downarrow \uparrow \downarrow+\downarrow
$$

If we do not keep the old configuration:

(independent of the temperature)

Lennard Jones fluid

3.Monte Carlo Simulation

3.4.4 Particle displacement

Questions

- How can we prove that this scheme generates the desired distribution of configurations?
- Why make a random selection of the particle to be displaced?
- Why do we need to take the old configuration again?
- How large should we take: delx?

Not too big Not too small

3.Monte Carlo Simulation

3.5 Non-Boltzmann sampling

$\beta_{1}=1 / \mathrm{kB} T_{1}$

Non-Boltzmann sampling

Ensemble average of A at temperature T_{1} :
$\langle A\rangle_{N T_{1}}=\frac{\int A(r) e^{-\beta_{1} U(r)} d r}{\int e^{-\beta_{1}(r)} d r} \times \frac{1}{1}$
with

$$
\begin{aligned}
& \langle A\rangle_{N V T_{1}}=\frac{\int A(r) e^{-\beta_{1} u(r)} d r}{\int e^{-\beta_{1}(r)} d r} \\
& 1=e^{-\beta_{2}[U(r)-U(r)]}
\end{aligned}
$$

$\langle A\rangle_{N V T_{1}}=\frac{\int A(r) e^{-\beta_{1} u(r)} e^{-\beta_{2}[U(r)-U(r)]} d r}{\int e^{-\beta_{1} \cup(r)} e^{-\beta_{2}[u(r)-U(r)]} d r}$

Understanding Molecular Simatiation

Non-Boltzmann sampling

Ensemble average of A at temperature T_{1} :

$$
\langle A\rangle_{N T_{1}}=\frac{\int A(r) e^{-\beta_{1} U(r)} d r}{\int e^{-\beta_{1} U(r)} d r}
$$

T_{1} is arbitrary, we can
use any value
$\langle A\rangle=\int A(r) e^{-\beta_{1} u(r)} e^{-\beta_{2}[u(r)-u(r)]} d r \quad a_{s}$ in multiply with 1/1: $=\frac{\int e^{u(r)} d r \int A(r) e^{\left.-\left[\beta_{1}(r)-\beta_{2} r\right)\right]} e^{-\beta_{2} u(r)} d r}{\int e^{-} \frac{\text { We perform a }}{} \mathrm{U}^{\left.2(r)-\beta_{2} u(r)\right]} e} \begin{gathered}\text { simulation at } T_{2}\end{gathered}$
$\langle A\rangle=\int A(r) e^{-\left[\beta_{1} u(r)-\beta_{2} u(r)\right]} e^{-\beta_{2} u(r)} d r \quad \int e^{-e^{\left.u(r)-\beta_{2} u(r)\right]} e}$ simulation at T_{2}

But obtain an ensemble

3. Monte Carlo Simulation

3.6 Parallel Monte Carlo

Parallel Monte Carlo

$\because \because$

How to do a Monte Carlo simulation in parallel?

- (trivial but works best) Use an ensemble of systems with different seeds for the random number generator
- Is it possible to do Monte Carlo in parallel?
- Monte Carlo is sequential!
- We first have to know the fait of the current move before we can continue!

Parallel Monte Carlo - algorithm

Naive (and wrong)

1. Generate k trial configurations in parallel
2. Select out of these the one with the lowest energy

$$
P(n)=\frac{e^{-\beta U(n)}}{\sum_{j=1}^{g} e^{-\beta U(j)}}
$$

3. Accept and reject using normal Monte Carlo rule:

$$
\operatorname{acc}(0 \rightarrow n)=e^{-\beta[U(n)-U(0)]}
$$

Conventional acceptance rules

The conventional acceptance rules give a bias

Understanding Molecular Simulation

Understanding Molecular Simulation

Markov Processes - Detailed Balance

Condition of detailed balance:

$$
\begin{gathered}
K(o \rightarrow n)=K(n \rightarrow 0) \\
K(o \rightarrow n)=N(o) \times \alpha(o \rightarrow n) \times \operatorname{acc}(o \rightarrow n) \\
K(n \rightarrow 0)=N(n) \times \alpha(n \rightarrow 0) \times \operatorname{acc}(n \rightarrow 0)
\end{gathered}
$$

$$
\frac{\operatorname{acc}(0 \rightarrow n)}{\operatorname{acc}(n \rightarrow 0)}=\frac{N(n) \times a(\rightarrow 0)}{N(0) \times \alpha(\rightarrow \rightarrow n)}=\frac{N(n)}{N(0)}
$$

Understanding Molecular Simulation

$$
K(o \rightarrow n)=N(0) \times \alpha(o \rightarrow n) \times \operatorname{acc}(o \rightarrow n)
$$

A priori probability to generate

 configuration n :Rosenbluth factor configuration n :

$$
W(n)=\sum_{j=1}^{g} e^{-\beta U(j)} \quad \alpha(o \rightarrow n)=\frac{e^{-\beta u(n)}}{W(n)}
$$

A priori probability to generate configuration o :

Rosenbluth factor configuration o:

$$
\begin{aligned}
& W(0)=e^{-\beta U(0)}+\sum_{j=1}^{g-1} e^{-\beta U(j)} \\
& \alpha(n \rightarrow 0)=\frac{e^{-\beta U(o)}}{W(0)}
\end{aligned}
$$

Understanding Molecular Simulation (3rd edition)

$$
\frac{\operatorname{acc}(0 \rightarrow n)}{\operatorname{acc}(n \rightarrow 0)}=\frac{N(n) \times \alpha(n \rightarrow 0)}{N(0) \times \alpha(0 \rightarrow n)}
$$

Now with the correct a priori probabilities to generate a configuration:

$$
\begin{aligned}
& \alpha(0 \rightarrow n)=\frac{e^{-\beta U(n)}}{W(n)} \\
& \alpha(n \rightarrow 0)=\frac{e^{-\beta U(0)}}{W(0)}
\end{aligned}
$$

This gives as acceptance rules:

$$
\frac{\operatorname{acc}(0 \rightarrow n)}{\operatorname{acc}(n \rightarrow 0)}=\frac{e^{-\beta U(n)} \times \frac{e^{-\beta U(0)}}{W(0)}}{e^{-\beta U(0)} \times \frac{e^{-\beta U(n)}}{W(n)}}=\frac{W(n)}{W(0)}
$$

Understanding Molecular Simulation (3rd edition)

Conventional acceptance rules

Modified acceptance rules remove the bias exactly
Understanding Molecular Simulation

