

3. Monte Carlo Simulations

Molecular Simulations

Monte Carlo Simulations

- 3. Monte Carlo
 - 3.1.Introduction
 - 3.2. Statistical Thermodynamics (recall)
 - 3.3.Importance sampling
 - 3.4. Details of the algorithm
 - 3.5.Non-Boltzmann sampling
 - 3.6.Parallel Monte Carlo

3. Monte Carlo Simulations

3.2 Statistical Thermodynamics

Canonical ensemble: statistical mechanics

Consider a small system that can exchange energy with a big reservoir $\ln \Omega (E_1, E - E_1) = \ln \Omega (E) - \left(\frac{\partial \ln \Omega}{\partial E}\right) E_1 + \cdots$

If the reservoir is very big we can ignore the higher order terms:

 $\frac{\ln\Omega(E_{1}, E - E_{1})}{\ln\Omega(E)} = -\frac{E_{1}}{k_{B}T}$

Hence, the probability to find E_1 :

$$P(E_{1}) = \frac{\Omega(E_{1}, E - E_{1})}{\sum_{i} \Omega(E_{i}, E - E_{i})} = \frac{\Omega(E_{1}, E - E_{1})/\Omega(E)}{\sum_{i} \Omega(E_{i}, E - E_{i})/\Omega(E)} = C \frac{\Omega(E_{1}, E - E_{1})}{\Omega(E)}$$
$$P(E_{1}) \propto \exp\left[-\frac{E_{1}}{k_{B}T}\right] \propto \exp\left[-\beta E_{1}\right]$$

Summary: Canonical ensemble (N,V,T)

Partition function:

$$Q_{N,V,T} = \frac{1}{\Lambda^{3N} N!} \int e^{-\frac{U(r)}{k_B T}} dr^{3N}$$

 $P(r^{3N}) \propto e^{-\frac{U(r^{3N})}{k_B T}}$

Probability to find a particular configuration:

Ensemble average:

$$\left\langle A \right\rangle_{N,V,T} = \frac{\frac{1}{\Lambda^{3N}N!} \int A(r) e^{-\beta U(r)} dr^{3N}}{Q_{N,V,T}} = \frac{\int A(r) e^{-\beta U(r)} dr^{3N}}{\int e^{-\beta U(r)} dr^{3N}}$$

Free energy:

 $\beta F = -\ln Q_{NVT}$

3.Monte Carlo Simulations

3.3 Importance Sampling

Numerical Integration

Monte Carlo simulations

Generate M configurations using Monte Carlo moves:

We can compute the average:

The probability to generate a configuration in our MC scheme: *P^{MC}*

 $\left\{r_{1}^{3N}, r_{2}^{3N}, r_{3}^{3N}, r_{4}^{3N}, \cdots, r_{M}^{3N}\right\}$

$$\bar{A} = \frac{1}{M} \sum_{i=1}^{M} A\left(r_i^{3N}\right)$$

$$\overline{A} = \frac{\int A(r^{3N}) P^{MC}(r^{3N}) dr^{3N}}{\int P^{MC}(r^{3N}) dr^{3N}}$$

Question: how to chose *P^{MC}* such that we sample the canonical ensemble?

Ensemble Average

$$\left\langle A\right\rangle_{NVT} = \frac{1}{Q_{NVT}} \frac{1}{N!\Lambda^{3N}} \int A(r^{3N}) e^{-\beta U(r^{3N})} dr^{3N}$$

$$\langle A \rangle_{\scriptscriptstyle NVT} = \int A(r^{_{3N}}) P(r^{_{3N}}) dr^{_{3N}}$$

with

$$P(r^{3N}) = \frac{e^{-\beta U(r^{3N})}}{\Lambda^{3N} N! Q_{NVT}}$$

$$\left\langle A\right\rangle_{NVT} = \int A(r^{3N}) P(r^{3N}) dr^{3N} = \frac{\int A(r^{3N}) e^{-\beta U(r^{3N})} dr^{3N}}{\int e^{-\beta U(r^{3N})} dr^{3N}}$$

Monte Carlo - canonical ensemble

Importance Sampling: what got lost?

3.Monte Carlo Simulation

3.4 Details of the algorithm

```
program MC
for 1 ≤ itrial ≤ ntrial do
mcmove
if (itrial % nsamp) == 0 then
sample
endif
enddo
end program
basic Metropolis algorithm
perform ntrial MC trial moves
trial move procedure
% denotes the Modulo operation
sample procedure
```

Specific Comments (for general comments, see p. 7)

- **1.** Function **mcmove** attempts to displace a randomly selected particle (see Algorithm 2).
- 2. Function sample samples observables every nsample-th trial move.

Algorithm 2 (Monte Carlo trial displacement)

function mcmove	Metropolis MC trial move
$i=int(\mathcal{R}*npart)+1$	select random particle with
eno = ener (x(i),i)	1 ≤ i ≤ npart eno: energy particle i at "old" position x(i)
$xn=x(i)+(\mathcal{R}-0.5)*delx$	trial position xn for particle i
enn = ener (xn,i)	enn: energy of i at xn
if $\mathcal{R} < \exp[-\beta * (\text{enn-eno})]$ then	Metropolis criterion Eq. (3.3.1)
x(i)=xn	if accepted, x(i) becomes xn
endif	
end function	

Specific Comments (for general comments, see p. 7)

- **1.** npart: number of particles. x(npart) position array. $T = 1/\beta$, maximum steps size = 0.5*delx
- 2. The function ener(x): computes the interaction energy of a particle at position x, using the approach shown in Algorithm 5.
- **3.** \mathcal{R} generates a random number uniformly between 0 and 1
- **4.** int(z) returns the integer part of z
- **5.** Note that, if a configuration is rejected, the old configuration is retained.

Understanding Molecular Simulation (3rd edition)

Questions

- How can we prove that this scheme generates the desired distribution of configurations?
- Why make a random selection of the particle to be displaced?
- Why do we need to take the old configuration again?
- How large should we take: delx?

3.Monte Carlo Simulations

3.4.1 Detailed balance

Questions

- How can we prove that this scheme generates the desired distribution of configurations?
- Why make a random selection of the particle to be displaced?
- Why do we need to take the old configuration again?
- How large should we take: delx?

canonical ensembles

Markov Processes

Markov Process

- Next step only depends on the current state
- Ergodic: all possible states can be reached by a set of single steps
- Detailed balance
- Process will approach a limiting distribution

- *P(o)*: probability to find the state *o*
- Ensemble: take a very large number (M) of identical systems: N(o) = M x P(o); the total number of systems in the state o

Markov Processes - Detailed Balance

 $K(o \rightarrow n)$: total number of systems in our ensemble that move $o \rightarrow n$

$$K(o \rightarrow n) = N(o) \times \alpha(o \rightarrow n) \times \operatorname{acc}(o \rightarrow n)$$

- *N(o)* : total number of systems in our ensemble in state o
- $\alpha(o \rightarrow n)$: a priori probability to generate a move $o \rightarrow n$
- $acc(o \rightarrow n)$: probability to accept the move $o \rightarrow n$ Understanding Molecular Simulation

Markov Processes - Detailed Balance

NVT-ensemble

In the canonical ensemble the number of configurations in state *n* is given by:

We assume that in our Monte Carlo moves the a priori probability to perform a move is independent of the configuration:

$$N(n) \propto e^{-\beta U(n)}$$

$$\alpha(o \to n) = \alpha(n \to o) = \alpha$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n) \times \alpha(n \to o)}{N(o) \times \alpha(o \to n)} = \frac{N(n)}{N(o)}$$

Which gives as condition for the acceptance rule:

Specific Comments (for general comments, see p. 7)

- **1.** npart: number of particles. x(npart) position array. $T = 1/\beta$, maximum steps size = 0.5*delx
- 2. The function ener(x): computes the interaction energy of a particle at position x, using the approach shown in Algorithm 5.
- **3.** \mathcal{R} generates a random number uniformly between 0 and 1
- **4.** int(z) returns the integer part of z
- 5. Note that, if a configuration is rejected, the old configuration is retained.

Understanding Molecular Simulation (3rd edition)

Metropolis et al.

Many acceptance rules that satisfy:

 $o \rightarrow n$

Metropolis *et al.* introduced:

lf:

lf:

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{e^{-\beta U(n)}}{e^{-\beta U(o)}}$$

$$acc(o \rightarrow n) = \min(1, e^{-\beta[U(n) - U(o)]}) = \min(1, e^{-\beta\Delta U})$$
$$\Delta U < 0 \quad acc(o \rightarrow n) = 1$$
$$accept \text{ the move}$$
$$\Delta U > 0 \quad acc(o \rightarrow n) = e^{-\beta\Delta U}$$

draw a uniform random number [0;1] and accept the new configuration if:

 $ranf < e^{-\beta\Delta U}$

3.Monte Carlo Simulation

3.4.2 Particle selection

Questions

- How can we prove that this scheme generates the desired distribution of configurations?
- Why make a random selection of the particle to be displaced?
- Why do we need to take the old configuration again?
- How large should we take: delx?

Detailed

Balance

3.Monte Carlo Simulation

3.4.3 Selecting the old configuration

Questions

- How can we prove that this scheme generates the desired distribution of configurations?
- Why make a random selection of the particle to be displaced?
- Why do we need to take the old configuration again?
- How large should we take: delx?

Specific Comments (for general comments, see p. 7)

- **1.** npart: number of particles. x(npart) position array. $T = 1/\beta$, maximum steps size = 0.5*delx
- 2. The function ener(x): computes the interaction energy of a particle at position x, using the approach shown in Algorithm 5.
- **3.** \mathcal{R} generates a random number uniformly between 0 and 1
- **4.** int(z) returns the integer part of z
- 5. Note that, if a configuration is rejected, the old configuration is retained.

Understanding Molecular Simulation (3rd edition)

Mathematical

Transition probability from $o \rightarrow n$:

$$\pi(o \to n) = \alpha(o \to n) \times \operatorname{acc}(o \to n)$$

As by definition we make a transition:

The probability we do not make a move:

 $\pi(o \to o) = 1 - \sum_{n \neq 0} \pi(o \to n)$

This term $\neq 0$

 $\sum_{n} \pi(o \rightarrow n) = 1$

Model

Let us take a spin system: (with energy $U^{\uparrow} = +1$ and $U^{\downarrow} = -1$)

Probability to find **1**:

A possible configuration:

 $P(\uparrow) = e^{-\beta U(\uparrow)}$

If we do not keep the old configuration:

(independent of the temperature)

Lennard Jones fluid

3.Monte Carlo Simulation

3.4.4 Particle displacement

Questions

- How can we prove that this scheme generates the desired distribution of configurations?
- Why make a random selection of the particle to be displaced?
- Why do we need to take the old configuration again?
- How large should we take: delx?

Not too big Not too small

3.Monte Carlo Simulation

3.5 Non-Boltzmann sampling

Non-Boltzmann sampling

 $\beta_1 = 1/k_BT_1$

Non-Boltzmann sampling

3. Monte Carlo Simulation

3.6 Parallel Monte Carlo

Parallel Monte Carlo

How to do a Monte Carlo simulation in parallel?

- (trivial but works best) Use an ensemble of systems with different seeds for the random number generator
- Is it possible to do Monte Carlo in parallel?
 - Monte Carlo is sequential!
 - We first have to know the fait of the current move before we can continue!

Parallel Monte Carlo - algorithm

Naive (and wrong)

- 1. Generate k trial configurations in parallel
- 2. Select out of these the one with the lowest energy

$$P(n) = \frac{e^{-\beta U(n)}}{\sum_{j=1}^{g} e^{-\beta U(j)}}$$

3. Accept and reject using normal Monte Carlo rule:

$$\operatorname{acc}(o \rightarrow n) = e^{-\beta \left[U(n) - U(o) \right]}$$

Conventional acceptance rules

Understanding Molecular Simulation

Markov Processes - Detailed Balance

Understanding Molecular Simulation

$$K(o \rightarrow n) = N(o) \times \alpha(o \rightarrow n) \times \operatorname{acc}(o \rightarrow n)$$

A priori probability to generate configuration n:

Rosenbluth factor configuration n:

$$W(n) = \sum_{j=1}^{g} e^{-\beta U(j)} \qquad \qquad \alpha(o \to n) = \frac{e^{-\beta U(n)}}{W(n)}$$

 $\alpha(o \rightarrow n) = -$

A priori probability to generate configuration o:

Rosenbluth factor configuration o:

$$\alpha(n \rightarrow o) = \frac{e^{-\beta U(o)}}{\sum_{j=1}^{g} e^{-\beta U(j)}}$$

 $\frac{e^{-\beta U(n)}}{\sum_{k=1}^{g} e^{-\beta U(j)}}$

$$W(o) = e^{-\beta U(o)} + \sum_{j=1}^{g-1} e^{-\beta U(j)}$$

$$\alpha(n \to o) = \frac{e^{-\beta U(o)}}{W(o)}$$

Understanding Molecular Simulation (3rd edition)

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n) \times \alpha(n \to o)}{N(o) \times \alpha(o \to n)}$$

Now with the correct a priori probabilities to generate a configuration:

$$\alpha(o \to n) = \frac{e^{-\beta U(n)}}{W(n)}$$

$$\alpha(n \to o) = \frac{e^{-\beta U(o)}}{W(o)}$$

This gives as acceptance rules:

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{e^{-\beta U(n)} \times \frac{e^{-\beta U(o)}}{W(o)}}{e^{-\beta U(o)} \times \frac{e^{-\beta U(n)}}{W(n)}} = \frac{W(n)}{W(o)}$$

Understanding Molecular Simulation (3rd edition)

Conventional acceptance rules

