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Molecular Simulations

➡ Molecular dynamics: 
solve equations of motion 

➡ Monte Carlo: importance 
sampling
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Monte Carlo Simulations
3. Monte Carlo 

3.1.Introduction 
3.2.Statistical Thermodynamics (recall) 
3.3.Importance sampling 
3.4.Details of the algorithm 
3.5.Non-Boltzmann sampling 
3.6.Parallel Monte Carlo 
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3.2 Statistical Thermodynamics
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Canonical ensemble: statistical mechanics

Consider a small system that can exchange energy 
with a big reservoir

Hence, the probability to find E1:

E1

lnΩ E1,E − E1( ) = lnΩ E( )− ∂lnΩ
∂E

⎛
⎝⎜

⎞
⎠⎟
E1 +!

=1/kBT

lnΩ E1,E − E1( )
lnΩ E( ) = −

E1
kBT

If the reservoir is very big we can ignore the higher 
order terms:

P E1( ) = Ω E1,E − E1( )
Ω Ei ,E − Ei( )i∑

=
Ω E1,E − E1( ) Ω E( )
Ω Ei ,E − Ei( ) Ω E( )i∑

= C
Ω E1,E − E1( )

Ω E( )

P E1( )∝ exp −
E1
kBT

⎡

⎣
⎢

⎤

⎦
⎥ ∝ exp −βE1⎡⎣ ⎤⎦

β=1/kBT
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Summary: Canonical ensemble (N,V,T)

Partition function:

Probability to find a particular 
configuration:

Free energy: 

QN,V ,T =
1

Λ3NN!
e
−
U r( )
kBT dr3N∫

P r3N( )∝ e−
U r3N( )
kBT

βF = − lnQNVT

Ensemble average:

A
N,V ,T

=

1
Λ3NN!

A r( )e−βU r( )dr3N∫
QN,V ,T

=
A r( )e−βU r( )dr3N∫
e

−βU r( )
dr3N∫
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3.Monte Carlo Simulations 

3.3 Importance Sampling
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Numerical Integration
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Monte Carlo simulations

Generate M configurations using 
Monte Carlo moves:

r1
3N ,r2

3N ,r3
3N ,r4

3N ,!,rM
3N{ }

We can compute the average:

The probability to generate a 
configuration in our MC 
scheme: PMC

A =
A r3N( )PMC r3N( )dr3N∫
PMC r3N( )dr3N∫

Question: how to chose PMC such that 
we sample the canonical ensemble?

Ā =
1
M

M

∑
i=1

A (r3N
i )
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Ensemble Average

A
NVT

= 1
QNVT

1
N!Λ3N

A r3N( )e−βU r3N( )dr3N∫

We can rewrite this using the 
probability to find a particular 
configuration

P r3N( ) = e
−βU r3N( )

Λ3NN!QNVT

A
NVT

= A r3N( )P r3N( )dr3N∫

with

A
NVT

= A r3N( )P r3N( )dr3N∫ =
A r3N( )e−βU r3N( )dr3N∫
e
−βU r3N( )dr3N∫
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2. No need to know 
the partition function

1. No need 
to know C

Monte Carlo - canonical ensemble
Canonical ensemble:

P r3N( ) = e
−βU r3N( )

Λ3NN!QNVT

with

A
NVT

= A r3N( )P r3N( )dr3N∫ =
A r3N( )e−βU r3N( )dr3N∫
e
−βU r3N( )dr3N∫

Monte Carlo: A = A ri
3N( )i=1

M∑ A =
A r3N( )PMC r3N( )dr3N∫
PMC r3N( )dr3N∫

Hence, we need 
to sample: PMC r3N( ) = Ce−βU r3N( )

A =
C A r3N( )e−βU r3N( )dr3N∫
C e

−βU r3N( )dr3N∫
=
A r3N( )e−βU r3N( )dr3N∫
e
−βU r3N( )dr3N∫

= A
NVT
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Importance Sampling: what got lost?
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3.Monte Carlo Simulation

3.4 Details of the algorithm
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Algorithm 1 (Core of Metropolis MC code)

program MC basic Metropolis algorithm
for 1 ≤ itrial ≤ ntrial do perform ntrial MC trial moves

mcmove trial move procedure
if (itrial % nsamp) == 0 then % denotes the Modulo operation

sample sample procedure
endif

enddo
end program

Specific Comments (for general comments, see p. 7)

1. Function mcmove attempts to displace a randomly selected particle
(see Algorithm 2).

2. Function sample samples observables every nsample-th trial move.

exp[−βU(rN)]. In the standard implementation of the approach introduced by
Metropolis et al. [6], we use the following scheme:

1. Select a particle at random,7 and calculate its contribution U(rN) to the en-
ergy of the system.8

2. Give the particle a random displacement, r ′ = r + ", and calculate its new
potential energy U(r′N).

3. Accept the move from rN to r′N with probability

acc(o → n) = min
(

1, exp{−β[U(r′N) − U(rN)]}
)

. (3.3.1)

An implementation of this basic Metropolis scheme is shown in Algorithms 1
and 2.

3.3.2 Technical details

Computing averages in Monte Carlo simulations can be accelerated using a
number of tricks. Ideally, schemes to save computer time should not affect the
results of a simulation in a systematic way, but that is often not completely true.

7 Selecting particles at random is standard practice in MC because other choices yield algorithms
that do not satisfy detailed balance. Interestingly, the original Metropolis algorithm [6] moved parti-
cles sequentially, and hence violated detailed balance. It did, however, satisfy the balance condition.
In section 13.4.4, we will discuss how breaking detailed balance may speed up the convergence of
MC simulations. An explicit description of trial moves involving a particle selected at random can
be found in the 1957 paper by Wood and Parker [69].
8 This is straightforward for pairwise additive interactions. However, for systems with many-body
interactions, it would be that part of the potential energy of the system that depends on the coordinate
of the selected particle. In the worst case, this may simply be the total potential energy of the system.
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Algorithm 2 (Monte Carlo trial displacement)

function mcmove Metropolis MC trial move

i=int(R*npart)+1 select random particle with
1 ≤ i ≤ npart

eno = ener(x(i),i) eno: energy particle i at
“old” position x(i)

xn=x(i)+(R-0.5)*delx trial position xn for particle i

enn = ener(xn,i) enn: energy of i at xn
if R < exp[-β*(enn-eno)] then Metropolis criterion Eq. (3.3.1)

x(i)=xn if accepted, x(i) becomes xn
endif

end function

Specific Comments (for general comments, see p. 7)

1. npart: number of particles. x(npart) position array. T = 1/β, maximum
steps size = 0.5*delx

2. The function ener(x): computes the interaction energy of a particle at posi-
tion x, using the approach shown in Algorithm 5.

3. R generates a random number uniformly between 0 and 1
4. int(z) returns the integer part of z
5. Note that, if a configuration is rejected, the old configuration is retained.

The main reason is that simulations of macroscopic systems are not feasible:
we, therefore, carry out simulations on microscopic (hundreds to millions of
particles) systems. The properties of such finite systems are often slightly, but
sometimes very different from those of macroscopic systems. Similarly, even
for moderately-sized systems, it is often advantageous to avoid explicit calcu-
lation of very weak intermolecular interactions between particles that are far
apart. In both cases, the effect of these approximations can be mitigated, as we
discuss below. But, whatever the situation, the key point is that we should be
aware of possible systematic errors introduced by time-saving tricks and correct
them wherever possible.

Many of the time-saving devices that we discuss below are similar for MC
and MD simulations. Rather than repeat the present section in the chapter on
MD, we shall refer in our discussion below to both types of simulations when-
ever this is relevant. However, we will not yet assume that the reader is familiar
with the technical details of MD simulations. The only feature of MD that, at
this stage, is relevant for our discussion is that in MD simulations, we must
compute the forces acting on all particles.
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Questions

• How can we prove that this scheme generates the 
desired distribution of configurations? 

• Why make a random selection of the particle to be 
displaced? 

• Why do we need to take the old configuration again? 
• How large should we take: delx?
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3.Monte Carlo Simulations 

3.4.1 Detailed balance
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canonical ensembles

Questions

• How can we prove that this scheme generates the 
desired distribution of configurations? 

• Why make a random selection of the particle to be 
displaced? 

• Why do we need to take the old configuration again? 
• How large should we take: delx?
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Markov Processes

Markov Process 
• Next step only depends on the current state 
• Ergodic: all possible states can be reached by a set of 

single steps 
• Detailed balance 

Process will approach a limiting distribution
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Ensembles versus probability

• P(o): probability to find the state o 

• Ensemble: take a very large number (M) of identical 
systems: N(o) = M x P(o); the total number of systems 
in the state o
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Markov Processes - Detailed Balance

o n
K(o→n)

• N(o) : total number of systems in our ensemble in state o 

• α(o → n): a priori probability to generate a move o → n 

• acc(o → n): probability to accept the move o → n

K(o → n): total number of systems in our 
ensemble that move o → n

K o→ n( ) = N o( )×α o→ n( )× acc o→ n( )
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Markov Processes - Detailed Balance

o nK(o→n)

K(n→o)

Condition of detailed balance:

K o→ n( ) = N o( )×α o→ n( )× acc o→ n( )
K o→ n( ) = K n→ o( )

K n→ o( ) = N n( )×α n→ o( )× acc n→ o( )
acc o→ n( )
acc n→ o( ) =

N n( )×α n→ o( )
N o( )×α o→ n( )
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NVT-ensemble

In the canonical ensemble the number 
of configurations in state n is given by:

Which gives as condition for 
the acceptance rule: acc o→ n( )

acc n→ o( ) =
e−βU n( )

e−βU o( )

N n( )∝ e−βU n( )

We assume that in our Monte 
Carlo moves the a priori probability 
to perform a move is independent 
of the configuration:

α o→ n( ) =α n→ o( ) =α
acc o→ n( )
acc n→ o( ) =

N n( )×α n→ o( )
N o( )×α o→ n( ) =

N n( )
N o( )
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Algorithm 2 (Monte Carlo trial displacement)

function mcmove Metropolis MC trial move

i=int(R*npart)+1 select random particle with
1 ≤ i ≤ npart

eno = ener(x(i),i) eno: energy particle i at
“old” position x(i)

xn=x(i)+(R-0.5)*delx trial position xn for particle i

enn = ener(xn,i) enn: energy of i at xn
if R < exp[-β*(enn-eno)] then Metropolis criterion Eq. (3.3.1)

x(i)=xn if accepted, x(i) becomes xn
endif

end function

Specific Comments (for general comments, see p. 7)

1. npart: number of particles. x(npart) position array. T = 1/β, maximum
steps size = 0.5*delx

2. The function ener(x): computes the interaction energy of a particle at posi-
tion x, using the approach shown in Algorithm 5.

3. R generates a random number uniformly between 0 and 1
4. int(z) returns the integer part of z
5. Note that, if a configuration is rejected, the old configuration is retained.

The main reason is that simulations of macroscopic systems are not feasible:
we, therefore, carry out simulations on microscopic (hundreds to millions of
particles) systems. The properties of such finite systems are often slightly, but
sometimes very different from those of macroscopic systems. Similarly, even
for moderately-sized systems, it is often advantageous to avoid explicit calcu-
lation of very weak intermolecular interactions between particles that are far
apart. In both cases, the effect of these approximations can be mitigated, as we
discuss below. But, whatever the situation, the key point is that we should be
aware of possible systematic errors introduced by time-saving tricks and correct
them wherever possible.

Many of the time-saving devices that we discuss below are similar for MC
and MD simulations. Rather than repeat the present section in the chapter on
MD, we shall refer in our discussion below to both types of simulations when-
ever this is relevant. However, we will not yet assume that the reader is familiar
with the technical details of MD simulations. The only feature of MD that, at
this stage, is relevant for our discussion is that in MD simulations, we must
compute the forces acting on all particles.



Understanding Molecular Simulation

Metropolis et al.

Many acceptance 
rules that satisfy:

Metropolis et al. introduced:

 ΔUo→n

If:

draw a uniform random number [0;1] 
and accept the new configuration if:  

acc o→ n( )
acc n→ o( ) =

e−βU n( )

e−βU o( )

acc o→ n( ) =min 1,e−β U n( )−U o( )⎡⎣ ⎤⎦( ) =min 1,e−βΔU( )
ΔU < 0 acc(o→ n) = 1

ranf < e−βΔU

ΔU > 0 acc(o→ n) = e−βΔU
accept the move

If:
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3.Monte Carlo Simulation

3.4.2 Particle selection
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Questions

• How can we prove that this scheme generates the 
desired distribution of configurations? 

• Why make a random selection of the particle to be 
displaced? 

• Why do we need to take the old configuration again? 

• How large should we take: delx?
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Detailed 
Balance
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3.Monte Carlo Simulation

3.4.3 Selecting the old configuration
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Questions

• How can we prove that this scheme generates the 
desired distribution of configurations? 

• Why make a random selection of the particle to be 
displaced? 

• Why do we need to take the old configuration 
again? 

• How large should we take: delx?
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Algorithm 2 (Monte Carlo trial displacement)

function mcmove Metropolis MC trial move

i=int(R*npart)+1 select random particle with
1 ≤ i ≤ npart

eno = ener(x(i),i) eno: energy particle i at
“old” position x(i)

xn=x(i)+(R-0.5)*delx trial position xn for particle i

enn = ener(xn,i) enn: energy of i at xn
if R < exp[-β*(enn-eno)] then Metropolis criterion Eq. (3.3.1)

x(i)=xn if accepted, x(i) becomes xn
endif

end function

Specific Comments (for general comments, see p. 7)

1. npart: number of particles. x(npart) position array. T = 1/β, maximum
steps size = 0.5*delx

2. The function ener(x): computes the interaction energy of a particle at posi-
tion x, using the approach shown in Algorithm 5.

3. R generates a random number uniformly between 0 and 1
4. int(z) returns the integer part of z
5. Note that, if a configuration is rejected, the old configuration is retained.

The main reason is that simulations of macroscopic systems are not feasible:
we, therefore, carry out simulations on microscopic (hundreds to millions of
particles) systems. The properties of such finite systems are often slightly, but
sometimes very different from those of macroscopic systems. Similarly, even
for moderately-sized systems, it is often advantageous to avoid explicit calcu-
lation of very weak intermolecular interactions between particles that are far
apart. In both cases, the effect of these approximations can be mitigated, as we
discuss below. But, whatever the situation, the key point is that we should be
aware of possible systematic errors introduced by time-saving tricks and correct
them wherever possible.

Many of the time-saving devices that we discuss below are similar for MC
and MD simulations. Rather than repeat the present section in the chapter on
MD, we shall refer in our discussion below to both types of simulations when-
ever this is relevant. However, we will not yet assume that the reader is familiar
with the technical details of MD simulations. The only feature of MD that, at
this stage, is relevant for our discussion is that in MD simulations, we must
compute the forces acting on all particles.
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Mathematical

Transition probability 
from o → n:

As by definition we 
make a transition:

The probability we do not 
make a move:

π o→ n( ) =α o→ n( )× acc o→ n( )

π o→ n( )n∑ = 1

π o→ o( ) = 1 − π o→ n( )n≠0∑

This term ≠ 0
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Model

Let us take a spin system:
(with energy U↑ = +1 and  U↓ = -1)

If we do not keep the old 
configuration:

(independent of the temperature)

P ↑( ) = e−βU ↑( )Probability to find↑:

A possible configuration:
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Lennard Jones fluid
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3.4.4 Particle displacement
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Questions

• How can we prove that this scheme generates the 
desired distribution of configurations? 

• Why make a random selection of the particle to be 
displaced? 

• Why do we need to take the old configuration again? 

• How large should we take: delx?
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Not too big Not too small
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3.Monte Carlo Simulation

3.5 Non-Boltzmann sampling 
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Non-Boltzmann sampling

A
NVT1

=
A r( )e−β1U r( )dr∫
e−β1U r( )dr∫

β1=1/kBT1

A
NVT1

=
A r( )e−β1U r( )dr∫
e−β1U r( )dr∫

× 1
1 1 = e−β2 U r( )−U r( )⎡⎣ ⎤⎦

A
NVT1

=
A r( )e−β1U r( )e−β2 U r( )−U r( )⎡⎣ ⎤⎦ dr∫
e−β1U r( )e−β2 U r( )−U r( )⎡⎣ ⎤⎦ dr∫

A
NVT1

=
A r( )e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫
e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫ =

e−β2U r( )dr∫ A r( )e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫
e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr e−β2U r( )dr∫∫

A
NVT1

=
Ae− β1−β2( )U

NVT2

e− β1−β2( )U
NVT2

Ensemble average of A at 
temperature T1:

with

again multiply with 1/1:

This gives us:
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Non-Boltzmann sampling

A
NVT1

=
A r( )e−β1U r( )dr∫
e−β1U r( )dr∫

A
NVT1

=
A r( )e−β1U r( )dr∫
e−β1U r( )dr∫

× 1
1 1 = e−β2 U r( )−U r( )⎡⎣ ⎤⎦

A
NVT1

=
A r( )e−β1U r( )e−β2 U r( )−U r( )⎡⎣ ⎤⎦ dr∫
e−β1U r( )e−β2 U r( )−U r( )⎡⎣ ⎤⎦ dr∫

A
NVT1

=
A r( )e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫
e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫

=
e−β2U r( )dr∫ A r( )e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr∫
e− β1U r( )−β2U r( )⎡⎣ ⎤⎦e−β2U r( )dr e−β2U r( )dr∫∫

Ensemble average of A at 
temperature T1:

with

again multiply with 1/1:

Why are we not 
using this?

T1 is arbitrary, we can 
use any value

and only 1 
simulation …

We perform a 
simulation at T2

But obtain an ensemble 
average at T1

A
NVT1

=
Ae− β1−β2( )U

NVT2

e− β1−β2( )U
NVT2
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T1

T2

T5

T3

T4

E

P(
E)

Overlap becomes very small
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3.6 Parallel Monte Carlo
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Parallel Monte Carlo

How to do a Monte Carlo simulation in parallel? 
• (trivial but works best) Use an ensemble of systems with 

different seeds for the random number generator 
• Is it possible to do Monte Carlo in parallel? 

• Monte Carlo is sequential! 
• We first have to know the fait of the current move 

before we can continue!
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Parallel Monte Carlo - algorithm

Naive (and wrong) 
1. Generate k trial configurations in parallel 
2. Select out of these the one with the lowest energy 

3. Accept and reject using normal Monte Carlo rule:

P n( ) = e−βU n( )

e−βU j( )
j=1

g∑

acc o→ n( ) = e−β U n( )−U o( )⎡⎣ ⎤⎦
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Conventional acceptance rules

The conventional acceptance rules give a bias
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What went wrong?

Detailed balance! 

acc( ) ( ) ( ) ( )
acc( ) ( ) ( ) ( )

o n N n n o N n
n o N o o n N o

α
α

→ × →= =
→ × →

( ) ( )K o n K n o→ = →
( ) ( ) ( ) acc( )K o n N o o n o nα→ = × → × →
( ) ( ) ( ) acc( )K n o N n n o n oα→ = × → × →
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Markov Processes - Detailed Balance

o nK(o→n)

K(n→o)

Condition of detailed balance:

K o→ n( ) = N o( )×α o→ n( )× acc o→ n( )
K o→ n( ) = K n→ o( )

K n→ o( ) = N n( )×α n→ o( )× acc n→ o( )
acc o→ n( )
acc n→ o( ) =

N n( )×α n→ o( )
N o( )×α o→ n( ) =

N n( )
N o( )?
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K o→ n( ) = N o( )×α o→ n( )× acc o→ n( )

α o→ n( ) = e−βU n( )

e−βU j( )
j=1

g∑
W n( ) = e−βU j( )

j=1

g∑
Rosenbluth factor 
configuration n:

α o→ n( ) = e
−βU n( )

W n( )

α n→ o( ) = e−βU o( )

e−βU j( )
j=1

g∑
W o( ) = e−βU o( ) + e−βU j( )

j=1

g−1∑
Rosenbluth factor 
configuration o:

A priori probability to generate 
configuration n:

A priori probability to generate 
configuration o:

α n→ o( ) = e
−βU o( )

W o( )
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acc o→ n( )
acc n→ o( ) =

N n( )×α n→ o( )
N o( )×α o→ n( )

Now with the correct a priori 
probabilities to generate a configuration:

α o→ n( ) = e
−βU n( )

W n( )

α n→ o( ) = e
−βU o( )

W o( )

acc o→ n( )
acc n→ o( ) =

e−βU n( ) × e
−βU o( )

W o( )
e−βU o( ) × e

−βU n( )

W n( )
=
W n( )
W o( )

This gives as acceptance rules:
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Conventional acceptance rules

Modified acceptance rules remove the bias exactly


