
Understanding Molecular Simulation

4. Molecular Dynamics

Understanding Molecular Simulation

4. Molecular Dynamics

4.1 Basics

Understanding Molecular Simulation

Molecular Simulations

➡ Molecular dynamics:
solve equations of motion

➡ Monte Carlo: importance
sampling

r1
r2
rn

r1
r2
rn

Understanding Molecular Simulation

Molecular Dynamics
4. Molecular Dynamics

4.1.Basics
4.2.Liouville formulation
4.3.Multiple time steps

Understanding Molecular Simulation

“Fundamentals”

Theory:

• Compute the forces on the particles
• Solve the equations of motion
• Sample after some # of time steps

F =md
2r
dt2

Understanding Molecular Simulation

Molecular Dynamics
100 PART | I Basics

Algorithm 3 (Core of Molecular Dynamics program)

program MD basic MD code
[...]

setlat function to initialize positions x

initv(temp) function to initialize velocities vx
t=0

while (t < tmax) do main MD loop
FandE function to compute forces and total energy
Integrate-V function to integrate equations of motion
t=t+delt update time
sample function to sample averages

enddo
end program

Specific Comments (for general comments, see p. 7)

1. The [...] at the beginning refers to the initialization of variables and pa-
rameters used in the program. We assume that the maximum run time tmax
and the time step delt are global variables. The initial temperature temp is
explicitly needed in the function initv, and is therefore shown as an argu-
ment.

2. The function setlat creates a crystal lattice of npart particles in a given
volume (see Algorithm 20). The number of particles npart is usually chosen
compatible with the number of unit cells (nx,ny,nz), and with nc, the number
of particles per unit cell: npart=nx*ny*nz*nc.

3. To simulate disordered systems, many simulation packages generate an ini-
tial structure that is already disordered. Such a function may speed up equi-
libration, but requires additional steps.

4. The function Initv (see Algorithm 4) initializes the velocities vx such that the
initial temperature is temp. From these velocities, the positions one time-step
earlier xm.

5. The main loop consists of three steps
a. FandE (see Algorithm 5) computes the current energy and forces
b. Sample samples the desired observables at time t - not necessarily ev-

ery time step. See Algorithms 8 and 9 for some examples of sampling
algorithms.

c. Integrate Newton’s equation of motion, using the Verlet algorithm
(Integrate-V —see Algorithm 6) and update the time t .

Clearly, we can adjust the instantaneous temperature T (t) to match the desired
temperature T by scaling all velocities with a factor (T /T (t))1/2. This initial
setting of the temperature is not particularly critical, as the temperature will
change anyway during equilibration.

Understanding Molecular Simulation

Initialization
Force calculations

• Periodic boundary conditions
• Order NxN and order N algorithms,
• Truncation and shift of the potential

Integrating the equations of motion
• integration schemes

Molecular Dynamics

Understanding Molecular Simulation

4. Molecular Dynamics

4.1.1 Basics: Initialization

Understanding Molecular Simulation

Molecular Dynamics simulations Chapter | 4 101

Algorithm 4 (Initialization of a Molecular Dynamics program)

function initv(temp) initializes velocities for MD program
sumv=0
sumv2=0
for 1 ≤ i ≤ npart do

x(i) = lattice_pos(i) Place the particle on a lattice
vx(i) =

√− ln(R)cos(2π R) Generate 1D normal distribution
sumv=sumv+v(i) center of mass momentum (m = 1)

enddo
sumv=sumv/npart center of mass velocity
for 1 ≤ i ≤ npart do set desired kinetic energy and set

vx(i) = vx(i) - sumv Center of Mass velocity to zero
sumv2=sumv2+vx(i)**2 kinetic energy

enddo
fs=

√
temp/(sumv2/nf) temp = desired initial temperature

for 1 ≤ i ≤ npart do
vx(i)=vx(i)*fs set initial kinetic temperature
xm(i)=x(i)-vx(i)*dt position previous time step

enddo
end function

Specific Comments (for general comments, see p. 7)

1. Every call of the random-number routine yields a different random number
R, uniformly distributed between 0 and 1.

2. Strictly speaking, we need not generate a Maxwell-Boltzmann distribution
for the initial velocities: upon equilibration, the distribution will become a
Maxwellian.

3. nf is the number of degrees of freedom. In d dimensions, energy and momen-
tum conservation imply that nf=d*(npart-1)-1.

4. During equilibration, the kinetic energy will change. Therefore, the temper-
ature of the equilibrated system will differ from temp.

As will appear later, we do not really use the velocities themselves in our
algorithm to solve Newton’s equations of motion. Rather, we use the positions
of all particles at the present (x) and previous (xm) time steps, combined with
our knowledge of the force (f) acting on the particles, to predict the positions at
the next time step. When we start the simulation, we must bootstrap this proce-
dure by generating approximate previous positions. Without much consideration
for any law of mechanics other than the conservation of linear momentum, we
approximate x for a particle in a direction by xm(i) = x(i) - v(i)*dt. Of
course, we could make a better estimate of the true previous position of each
particle. But as we are only bootstrapping the simulation, we do not worry about
such subtleties.

Understanding Molecular Simulation

Molecular Dynamics
Initialization

• Total momentum should be zero (no external forces)
• Temperature rescaling to desired temperature
• Particles start on a lattice

Force calculations
• Periodic boundary conditions
• Order NxN algorithm,
• Order N: neighbor lists, linked cell
• Truncation and shift of the potential

Integrating the equations of motion
• Velocity Verlet
• Kinetic energy

Understanding Molecular Simulation

4. Molecular Dynamics

4.1.2 Basics: Force Calculation

Understanding Molecular Simulation

Initialization
• Total momentum should be zero (no external forces)
• Temperature rescaling to desired temperature
• Particles start on a lattice

Force calculations
• Periodic boundary conditions
• Order NxN algorithm,
• Order N: neighbor lists, linked cell
• Truncation and shift of the potential

Integrating the equations of motion
• Velocity Verlet
• Kinetic energy

Molecular Dynamics

Understanding Molecular Simulation

Molecular Dynamics simulations Chapter | 4 103

Algorithm 5 (Calculation of pair forces and energy forces)

function FandE determine forces and energy
rc2=rc**2 rc=2 is the default cut-off
en=0 set energy to zero
for 1 ≤ i ≤ npart do

fx(i)=0 set forces to zero
enddo
for 1 ≤ i ≤ npart-1 do
for i+1 ≤ j ≤ npart do loop over all pairs

xr=x(i)-x(j)

xr=xr-box*round(xr/box) nearest image distance
r2=xr**2

if r2 <rc2 then test cutoff
r2i=1/r2
r2im1=r2i-1.0
rc2r2im1=rc2*r2i-1.0
en=en+r2im1*rc2r2im1**2 pair energy
ff=6.0*r2i**2*rc2r2im1

*(rc2r2im1-2) pair force
fx(i)=fx(i)+ff*xr
fx(j)=fx(j)-ff*xr

endif
enddo

enddo
end function

Specific Comments (for general comments, see p. 7)

1. Although FandE shares arrays and parameters with the rest of the program,
it does not require specific input parameters.

2. The diameter of the simulation box is denoted by box.
3. The function round, rounds a floating point number to the nearest integer.
4. In this algorithm, we use the WF potential [81], which is a simple LJ-like

potential. In reduced units, the pair energy:

en =
[
(1/r)2 − 1

][
(rc/r)2 − 1

]2
, for r < rc.

5. The pair force ff of the WF potential vanishes smoothly at rc. Hence, this
potential does not require truncating and shifting at rc (unlike LJ).

6. For typical atomic systems, the default value for rc is 2.0 in units of σ , the
smallest value of r where the potential crosses zero. For (nano)colloids, we
can use a smaller value of rc, but with a different pre-factor (see [81]).

Understanding Molecular Simulation

Periodic boundary conditions

Understanding Molecular Simulation

4. Molecular Dynamics

4.1.2 Basics: Force Calculation - The Lennard Jones potential

Understanding Molecular Simulation

The Lennard-Jones potentials
• The Lennard-Jones potential

• The truncated Lennard-Jones potential

• The truncated and shifted Lennard-Jones potential

ULJ r() = 4ε σ
r

⎛
⎝⎜

⎞
⎠⎟

12

− σ
r

⎛
⎝⎜

⎞
⎠⎟

6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

UTR
LJ r() = ULJ r() r ≤ rc

0 r > rc

⎧
⎨
⎪

⎩⎪

UTR−SH
LJ r() = ULJ r()−ULJ rc() r ≤ rc

0 r > rc

⎧
⎨
⎪

⎩⎪

Understanding Molecular Simulation

Understanding Molecular Simulation

The Lennard-Jones potentials

Understanding Molecular Simulation

4. Molecular Dynamics

4.1.2 Basics: Force Calculation - saving CPU time

Understanding Molecular Simulation

Saving CPU-time

Cell list Verlet-list

Understanding Molecular Simulation

4. Molecular Dynamics

4.1.3 Basics: Equations of Motion

Understanding Molecular Simulation

Molecular Dynamics simulations Chapter | 4 105

Algorithm 6 (Integrating the equations of motion)

function Integrate-V integrate equations of motion
sumv=0
sumv2=0

for 1 ≤ i ≤ npart do MD loop
xx=2*x(i)-xm(i)+delt**2*fx(i) Verlet algorithm (4.2.3)
vi=(xx-xm(i))/(2*delt) velocity (4.2.4)
sumv=sumv+vi velocity center of mass
sumv2=sumv2+vi**2 total kinetic energy
xm(i)=x(i) update “old” positions
x(i)=xx update “current” positions

enddo
temp=sumv2/(nf) current temperature
etot=(en+0.5*sumv2)/npart and total energy per particle
end function may be used elsewhere

Specific Comments (for general comments, see p. 7)

1. In the absence of external forces, Newton’s equations of motion conserve
momentum. This also holds for the discretized form of the equations of mo-
tion. Hence, during a single timestep, sumv/npart, the velocity of the center
of mass of the system, should remain conserved (usually zero) to within ma-
chine precision, unless there are obstacles (e.g., walls) in the system that can
act as momentum sinks.

2. Newton’s equations of motion also conserve the total energy of an isolated
system. However, in the discretized version, the conservation of etot is only
approximate. Yet, good algorithms will typically suppress the long-time drift
in the energy. It is therefore important to monitor etot, as a drift in this
quantity may signal programming errors.

3. In this function, we use the Verlet algorithm (4.2.3) to integrate the equations
of motion. The velocities are calculated using Eq. (4.2.4).

4. To compute the temperature, the sumv2 is divided by nf, the number of de-
grees of freedom: see Algorithm 4.

The estimate of the new position contains an error that is of order !t4, where !t

is the time step in our Molecular Dynamics scheme. Note that the Verlet algo-
rithm does not use the velocity to compute the new position. One can, however,
derive the velocity from knowledge of the trajectory, using

r(t + !t) − r(t − !t) = 2v(t)!t + O(!t3)

or

v(t) = r(t + !t) − r(t − !t)

2!t
+ O(!t2). (4.2.4)

Understanding Molecular Simulation

Equations of motion

r t + Δt() = r t()+ dr t()
dt

Δt +
d2r t()
dt2

Δt2

2!
+O Δt3()

We can make a Taylor expansion for the positions:

The simplest form (Euler):

v t + Δt() = v t()+mdf t()
dt

Δt

r t + Δt() = r t()+ v t()Δt +O Δt2()

We can do better!

Understanding Molecular Simulation

r t + Δt() = r t()+ dr t()
dt

Δt +
d2r t()
dt2

Δt2

2!
+
d2r t()
dt2

Δt3

3!
+O Δt4()

We can make a Taylor expansion for the positions:

When we add the two:

Verlet algorithm

r t − Δt() = r t()− dr t()
dt

Δt +
d2r t()
dt2

Δt2

2!
−
d2r t()
dt2

Δt3

3!
+O Δt4()

r t + Δt()+ r t − Δt() = 2r t()+ d
2r t()
dt2

Δt2 +O Δt4()

r t + Δt() = 2r t()− r t − Δt()+ f t()Δt
2

m
+O Δt4()

no need for
velocitiesnumerically not

ideal

Understanding Molecular Simulation

Velocity Verlet algorithm

Verlet algorithm:

v t + Δt() = v t()+ Δt
2m
f t + Δt()+ f t()⎡⎣ ⎤⎦

r t + Δt() = 2r t()− r t − Δt()+ f t()Δt
2

m
+O Δt4()

r t + Δt() = r t()+ v t()Δt + f t()Δt
2

2m
+O Δt4()

to see the equivalence:

r t +2Δt() = 2r t + Δt()− r t()+ v t + Δt()− v t()⎡⎣ ⎤⎦Δt + f t + Δt()− f t()⎡⎣ ⎤⎦
Δt2

2m

r t() = r t + Δt()− v t()Δt − f t()Δt
2

2m

r t +2Δt() = r t + Δt()+ v t + Δt()Δt + f t + Δt()Δt
2

2m

adding the two

with v t + Δt() = v t()+ Δt
2m
f t + Δt()+ f t()⎡⎣ ⎤⎦

r t +2Δt() = 2r t + Δt()− r t()+ f t + Δt()Δt
2

m

Understanding Molecular Simulation

Lyaponov instability

r1 0(),!,rN 0(),p1 0(),!,pN 0()()MD: reference trajectory
with initial condition:
MD: compare: r1 0(),!,rN 0(),p1 0(),!,pi 0()+ ε ,pj 0()− ε ,!,pN 0()()

ε = 10−10

Understanding Molecular Simulation

4. Molecular Dynamics

4.2 Liouville Formulation

Understanding Molecular Simulation

the dot above, ḟ,
implies time derivative Liouville formulation

Let us consider a function that f which depends on the
positions and momenta of the particles: f pN ,rN()

!f = ∂f
∂r

⎛
⎝⎜

⎞
⎠⎟
!r + ∂f

∂p
⎛
⎝⎜

⎞
⎠⎟
!p

We can “solve” how f depends on time:

Define the Liouville operator:
iL ≡ !r ∂

∂r
⎛
⎝⎜

⎞
⎠⎟
+ !p ∂

∂p
⎛
⎝⎜

⎞
⎠⎟

the time dependence follows from: df
dt

= iLf
with solution:

f = eiLtf 0()
beware: the solution is
equally useless as the
differential equation

Understanding Molecular Simulation

In an ideal world it would be less useless:
iL ≡ !r ∂

∂r
⎛
⎝⎜

⎞
⎠⎟
+ !p ∂

∂p
⎛
⎝⎜

⎞
⎠⎟

Let us look at half the equation iLr ≡
∂
∂r

⎛
⎝⎜

⎞
⎠⎟
!r

f = eiLrtf 0()
which has as solution:

ex = 1 + x + x
2

2!
+ x

3

3!
+!Taylor expansion:

eiLrtf 0() = 1 + iLrt + 12 iLrt()2 + 13! iLrt()3 +…⎡

⎣
⎢

⎤

⎦
⎥f 0()

eiLrtf 0() = 1 + !r 0()t ∂
∂r

⎛
⎝⎜

⎞
⎠⎟
+ 1
2
!r 0()t()2 ∂

∂r
⎛
⎝⎜

⎞
⎠⎟

2

+…
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
f 0()

f 0+ !r 0()t() = f 0()+ !r 0()t ∂f 0()
∂r

⎛

⎝
⎜

⎞

⎠
⎟ +
1
2
!r 0()t()2 ∂f 0()

∂r

⎛

⎝
⎜

⎞

⎠
⎟

2

+!

Hence: eiLrtf 0() = f 0+ !r 0()t()

the operator iLr
gives a shift of
the positions

Understanding Molecular Simulation

The operation iLr gives a shift of the positions
iL ≡ !r ∂

∂r
⎛
⎝⎜

⎞
⎠⎟
+ !p ∂

∂p
⎛
⎝⎜

⎞
⎠⎟

Similarly for the operator iLp iLp ≡
∂
∂p

⎛
⎝⎜

⎞
⎠⎟
!p

f = eiLptf 0()
which has as solution:

Taylor expansion:

eiLptf 0() = 1 + iLpt + 12 iLpt()2 + 13! iLpt()3 +…⎡

⎣
⎢

⎤

⎦
⎥f 0()

eiLptf 0() = 1 + !p 0()t ∂
∂p

⎛
⎝⎜

⎞
⎠⎟
+ 1
2
!p 0()t()2 ∂

∂p
⎛
⎝⎜

⎞
⎠⎟

2

+…
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
f 0()

f 0+ !p 0()t() = f 0()+ !p 0()t ∂f 0()
∂p

⎛

⎝
⎜

⎞

⎠
⎟ +
1
2
!p 0()t()2 ∂f 0()

∂p

⎛

⎝
⎜

⎞

⎠
⎟

2

+!

Hence: eiLptf 0() = f 0+ !p 0()t()

the operator iLp
gives a shift of
the momenta

Understanding Molecular Simulation

The operation iLr gives a shift of the
positions:

… and the operator iLp a shift of the
momenta:

This would have been useful if the
operators would commute

eiLtf 0,0() = e iLr+iLp()tf 0,0() ≠ eiLrteiLptf 0,0()

eiLrtf 0,0() = f 0,0+ !r 0()t()

eiLptf 0,0() = f 0+ !p 0()t,0()

Trotter expansion:

eA+B ≠ eAeB
we have the non-commuting operators A and B:

then the following expansion holds:

eA+B = limP→∞ e
A
2Pe

B
Pe

A
2P()P

Understanding Molecular Simulation

We can apply the Trotter expansion:

eiLrΔtf p t(),r t()() = f p t(),r t()+ !r t()Δt()

eiLptf 0,0() = f 0+ !p 0()t,0()
eA+B = limP→∞ e

A
2Pe

B
Pe

A
2P()P

Δt = t
P

iLrt
P

= iLrΔt
iLpt
2P

= iLp
Δt
2

eiLpΔt 2f p t(),r t()() = f p t()+ !p t()Δt2 ,r t()⎛
⎝⎜

⎞
⎠⎟

gives us a shift of the position:
r t + Δt()→ r t()+ !r t()Δt

gives us a shift of the momenta:
p t + Δt()→ p t()+ !p t()Δt2

eiLrtf 0,0() = f 0,0+ !r 0()t()

These give as operations:

Understanding Molecular Simulation

We can apply the Trotter expansion
to integrate M time steps: t=M x Δt

eiLp
Δt
2

f t() = eiLtf 0() = eiLp Δt2eiLrΔteiLp Δt2()M f 0()

iLrΔt

iLp
Δt
2

r t + Δt()→ r t()+ !r t()Δt
p t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ p t()+ !p t()Δt2

These give as operations:

p Δt
2

⎛
⎝⎜

⎞
⎠⎟
→ p 0()+ !p 0()Δt2

eiLp
Δt
2

eiLrΔt r Δt()→ r 0()+ !r Δt
2

⎛
⎝⎜

⎞
⎠⎟
Δt

p Δt()→ p Δt
2

⎛
⎝⎜

⎞
⎠⎟
+ !p Δt()Δt2which gives after one step

p 0()→ p 0()+ f 0()+ f Δt()⎡⎣ ⎤⎦
Δt
2

r 0()→ r 0()+ !r Δt
2

⎛
⎝⎜

⎞
⎠⎟
Δt = r 0()+ v 0()Δt + f 0()Δt

2

2m

Understanding Molecular Simulation

which gives after one step

p 0()→ p 0()+ f 0()+ f Δt()⎡⎣ ⎤⎦
Δt
2

r 0()→ r 0()+ !r Δt
2

⎛
⎝⎜

⎞
⎠⎟
Δt = r 0()+ v 0()Δt + f 0()Δt

2

2m

Velocity Verlet algorithm
r t + Δt() = r t()+ v t()Δt + f t()Δt

2

2m

v t + Δt() = v t()+ Δt
2m
f t + Δt()+ f t()⎡⎣ ⎤⎦

Understanding Molecular Simulation

vx=vx+delt*fx/2

x=x+delt*vx
Call force(fx)

vx=vx+delt*fx/2

Call force(fx)
Do while (t<tmax)

enddo

Velocity Verlet
algorithm: eiLp

Δt
2eiLrΔteiLp

Δt
2

iLrΔt : r t + Δt()→ r t()+ v t()Δt

iLp
Δt
2
: v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ f t()Δt2

iLp
Δt
2
: v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ f t()Δt2

iLrΔt : r t + Δt()→ r t()+ v t()Δt

iLp
Δt
2
: v t + Δt()→ v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
+ f t + Δt()Δt2

Understanding Molecular Simulation

Liouville formulation

Velocity Verlet algorithm r t + Δt() = r t()+ v t()Δt + f t()Δt
2

2m
v t + Δt() = v t()+ Δt

2m
f t + Δt()+ f t()⎡⎣ ⎤⎦

Transformations:
iLp Δt 2 : r t()→ r t()

v t()→ v t()+ f t()Δt 2m

Jp = Det
1 0

∂f
∂r

⎛
⎝⎜

⎞
⎠⎟
Δt
2m

1
= 1

iLrΔt : r t + Δt()→ r t()+ v t()Δt
v t()→ v t()
Jr = Det

1 Δt
0 1

= 1

Three subsequent coordinate transformations in either r
or r of which the Jacobian is one: Area preserving

Understanding Molecular Simulation

4. Molecular Dynamics

4.3 Multiple Time Steps

Understanding Molecular Simulation

Multiple time steps

What to do with “stiff” potentials?

• Fixed bond-length: constraints (Shake)
• Very small time step

Understanding Molecular Simulation

We can split the force is the stiff part and the
more slowly changing rest of the forces:

This allows us to split the Liouville operator:

Now we can make another Trotter expansion: δt=Δt/m

iLrΔt : r t + Δt()→ r t()+ v t()Δt
iLp

Δt
2
: v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ f t()Δt2

f t() = fShort t()+ fLong t()

iLt = iLrt + iLpShortt + iLpLong

The conventional Trotter expansion:

iLt = iLpLong Δt 2 iLr + iLpShort⎡⎣ ⎤⎦Δt iLpLong Δt 2⎡
⎣

⎤
⎦
M

iLr + iLpShort⎡⎣ ⎤⎦Δt = iLpShort δ t 2 iLrδ t iLpShort δ t 2⎡⎣ ⎤⎦
m

Understanding Molecular Simulation

The algorithm to solve the equations of motion

The steps are first iLpLong then m times iLpShort/iLr
followed by iLpLong again

f t() = fShort t()+ fLong t()

We now have 3 transformations:

iLt = iLpLong Δt 2 iLr + iLpShort⎡⎣ ⎤⎦Δt iLpLong Δt 2⎡
⎣

⎤
⎦
M

iLr + iLpShort⎡⎣ ⎤⎦Δt = iLpShort δ t 2 iLrδ t iLpShort δ t 2⎡⎣ ⎤⎦
m

iLpLong
Δt
2
: v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ fLong t()Δt2

iLpShort
δ t
2
: v t + δ t

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ fShort t()δ t2

iLrδ t : r t +δ t()→ r t()+ v t()δ t

Understanding Molecular Simulation

vx=vx+ddelt*fx_short/2

x=x+ddelt*vx
Call force_short(fx_short)

vx=vx+ddelt*fx_short/2

Call force(fx_long,f_short)

Do ddt=1,n

enddo

vx=vx+delt*fx_long/2

iLpLong
Δt
2
: v t + Δt

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ fLong t()Δt2

iLpShort
δ t
2
: v t + δ t

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ fShort t()δ t2

iLrδ t : r t +δ t()→ r t()+ v t()δ t

iLpShort
δ t
2
: v t + δ t

2
⎛
⎝⎜

⎞
⎠⎟
→ v t()+ fShort t()δ t2

Understanding Molecular Simulation

Time-scale-separation problems in MD Chapter | 14 513

Algorithm 28 (Multiple-time-step MD)

function multi(fl,fs) input:
fl: long-range part of the force
fs: short-range part of the force

vx=vx+0.5*delt*fl velocity Verlet with time step !t/2
for 1 ≤ it ≤ n do loop for the short time steps

vx=vx+0.5*(delt/n)*fs velocity Verlet with short timestep !t/n

x=x+(delt/n)2*vx

fs = force_short short-range forces
vx=vx+0.5*(delt/n)*fs

enddo
fl = force_long all long-ranged forces
vx=vx+0.5*delt*fl velocity Verlet with time step !t/2
end function

Specific Comments (for general comments, see p. 7)

1. In the argument list of function call we have added fl, fs to indicate that in
the velocity Verlet algorithm the force is remembered from the previous time
step.

2. Function force_short determines the short-range forces. Since this involves
a small number of particles, the calculation of these forces is much faster
than force_long in which all interacting particles must be considered.

≈ eiLlong!t/2ei(Lshort+Lr)!teiLlong!t/2.

We can again apply a Trotter expansion for the terms iLlong and iLr :

eiL!t = eiLlong!t/2
[
eiLshortδt/2neiLrδt/neiLshortδt/2n

]n
eiLlong!t/2.

We apply this Liouville operator to the initial position and velocity. We first
make a step using the expensive Flong

eiLlong!t/2f [ṙ(0), r(0)] = f
[
ṙ(0) + Flong(0)!t/2m, r(0)

]
,

followed by n small steps using the cheap Fshort with the smaller time step, δt ,
or

[
eiLshortδt/2neiLrδt/neiLshortδt/2n

]n
f

[
ṙ(0) + Flong(0)!t/2m, r(0)

]
,

and finally one more time-step of length !t/2 with the expensive Flong.
The result corresponds to solving the equations of motion using the veloc-

ity Verlet scheme using the force Fshort with time step δt and initial conditions
ṙ(0) + Flong(0)!t/2m, r(0). By construction, this algorithm is time reversible.

