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Rare events
Interesting transitions in complex systems 

– solution chemistry
– protein folding 
– enzymatic reactions
– complex surface reactions
– diffusion in porous media
– nucleation

These reactions happen on a long time 
scale compared to the molecular timescale 

dominated by collective, rare events
Straightforward MD very inefficient 
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Example: Diffusion in porous material



Phenomenological reaction kinetics
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A rare event can be seen as a chemical reaction 
between reactant A and product B

The change in population c(t) is (0<c<1)

This gives a relation between equilibrium 
population and reaction rates
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Let us make a perturbation of the equilibrium populations, e.g by 
applying an external field.
When releasing the field, the system will relax to the original equilibrium 

For state A For state B:

We can rewrite the kinetics in terms of the perturbation Δc:

With relaxation time

Relaxation time

cA t( )+ cB t( ) =1



Microscopic theory
Microscopic description of the progress of a reaction

q
Reaction coordinate: in this case the z-coordinate of the particle

We need to write the kinetics of the reaction in terms of this 
microscopic reaction coordinate q



Reaction coordinate

*q q<Reactant A:

Product B: *q q>

( ) ( ) ( )* 1 * *Ag q q q q q qq q- = - - = -

cA t( ) = gA t( )
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Let us introduce the function gA:

Heaviside θ-function
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With this function we write for the probability cA(t) the system is in state A:

Transition state: q = q*

1

0
gA(t) cA t( ) = gA t( )



Microscopic theory
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Is going to give us the 
macroscopic relaxation in terms of a 
microscopic time correlation function

This needs linear response theory



Let us consider the effect of a 
static perturbation:

For the equilibrium concentration as a function of ε:

( )0 *AH H g q qe= - -

This external potential increases the 
concentration of A

0A A Ac c c
e

D = - = gA ε
− gA 0

We need to compute the ensemble average in the form of :
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Perturbed Hamiltonian



H = H0 − εD

0
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A =
dΓ∫ Aexp −β H0 − εD( )⎡⎣ ⎤⎦
dΓ∫ exp −β H0 − εD( )⎡⎣ ⎤⎦

The original Hamiltonian (H0) is perturbed by εD: 

This gives as change in the expectation value of A:

with

Linear Response theory (static)

If the perturbation is small we can write A = A
0
+
∂ A

0

∂ε
ε



For such a small perturbation ΔA =
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Evaluated for ε= 0

Giving:



If we apply this result for cA:
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Let us now switch off the perturbation at t=0

Giving:

Let us see how the system relaxes to equilibrium (dynamical perturbation)

H = H0 − εD at t>0:   H = H0

ΔA t( ) = A t( ) − A
0
= A t( )

We take <A>0=0

Similar as for the static case for small values of ε, we have
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Linear Response theory (dynamic)



If we apply this result to

Compare linear response expression with the macroscopic expression

We obtain:

D = ΔgA    and   A= ΔgA

From static perturbation:

  
ΔA t( ) = βε D 0( )A t( )

ΔcA t( ) = βε ΔgA 0( )ΔgA t( )
βε =

ΔcA 0( )
cA cB

ΔcA t( ) = ΔcA 0( )
ΔgA 0( )ΔgA t( )
cA cB

ΔcA t( ) = ΔcA 0( )exp − t τ⎡⎣ ⎤⎦



Compare linear response expression with the macroscopic expression

ΔcA t( ) = ΔcA 0( )
ΔgA 0( )ΔgA t( )
cA cB

ΔcA t( ) = ΔcA 0( )exp − t τ⎡⎣ ⎤⎦
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Linear Response theory:  
see book Appendix C2 

Macroscopic relaxation time is determined by microscopic 
autocorrelation function.

Make use of linear response theory

ΔgA(t) = gA(t) -⟨gA ⟩
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gA 0( ) gA t( )
cA cB

Derivative

= −
gA 0( )gA t( )
cA cB

d
dt
A t( )B t +τ( ) = 0

   
A t( ) B t +τ( ) + A t( )B t +τ( ) = 0

   
A 0( ) B τ( ) = − A 0( )B τ( )

Stationary (t is arbitrary, only depends on τ) 

Δ has disappeared because of the 
derivative

Microscopic rate expression



kA→B t( ) =
q 0( ) ∂gB q 0( )− q*( )

∂q
gB t( )

cA

For sufficiently short t, we obtain

1
τ
exp −t τ"# $%=

gA 0( )gA t( )
cA cB

We have

kA→B t( ) =
gA 0( )gA t( )

cA

gA q − q*( ) = q ∂gA q − q*( )
∂q

= − q
∂gB q − q*( )

∂q

Using

Using the definition of gA in terms of q we can write

We now have an expression that 
relates the macroscopic reaction 
rate to microscopic properties

τ = kA→B
−1 1+ cA cB( )

−1
=
cB
kA→B



kA→B t( ) =
q 0( ) ∂gB q 0( )− q*( )

∂q
gB t( )

cA

Let us look at the 
different terms in this 
equation

  
gB t( ) = θ q t)( )− q*( ) Only when the system is in the 

product state we get a contribution 
to the ensemble average

  

∂gB q 0( )− q *( )
∂q

=
∂Θ q 0( )− q *( )

∂q

= δ q 0( )− q *( )

Only when the system starts at 
the transition state, we get a 
contribution to the ensemble 
average

q 0( ) Velocity at t=0

  
cA = Θ q* − q( ) Concentration of A

   
kA→B t( ) =

q 0( )δ q 0( )− q *( )θ q t( )− q *( )
θ q *−q( )



kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

δ q 0( )− q*( ) ×
δ q 0( )− q*( )
θ q*−q( )

kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

θ q*−q( )
We can rewrite this expression as a product by inserting 1

Ratio of probabilities to find 
particle on top of the barrier 
and in the state A

Conditional “probability” to find 
a particle on the top of the 
barrier with a positive velocity

Transition state theory

kA→B t( ) = q 0( )θ q t( )− q*( )
q=q*

×
δ q 0( )− q*( )
θ q*−q( )



  

δ q 0( )− q *( )
θ q *−q( )

Ratio of the probabilities to find a 
particle on top of the barrier and in 
the state A

δ q*−q( ) =C dqδ q − q*( )exp −βF q( )( )∫ =C exp −βF q*( )( )

  
Θ q *−q( ) = C dqΘ q − q *( )exp −βF q( )( )∫ = C dqexp −βF q( )( )

q<q*
∫

Probability to be on top of the barrier:

Probability to be in state A:

We need to determine the free energy as a function of the order parameter

This gives:
δ q 0( )− q*( )
θ q*−q( ) =

exp −βF q*( )( )
dqexp −βF q( )( )

q<q*
∫

Free energy barrier



Conditional “probability” to find a particle on the 
top of the barrier with a positive velocity

   
q 0( ) Assume that on top of the barrier the particle is in equilibrium: 

use Maxwell-Boltzmann distribution to generate this velocity

q 0( )θ q t( )− q*( ) Only particles with a positive velocity end up in the 
product state. We assume that once in the product 
state they stay there. 

lim
t→0+
q 0( )θ q t( )− q*( ) = q 0( )θ q 0( )( ) = 0.5 q 0( )

q 0( )θ q t( )− q*( )
q=q*

kTSTA→B = 0.5 q 0( )
exp −βF q*( )( )
dqexp −βF q( )( )

q<q*
∫ Eyring’s TST 

kTSTA→B = limt→0+
q 0( )θ q t( )− q*( )

q=q*
×
δ q 0( )− q*( )
θ q*−q( )



1-D ideal gas particle on a hill

Maxwell-Boltzmann:

kTSTA→B = 0.5 q 0( )
exp −βF q*( )( )
dqexp −βF q( )( )

q<q*
∫

kTSTA→B =
kBT
2πm

exp −βU q*( )( )
dqexp −βU q( )( )

q<q*
∫

   
q 0( ) = 2kBT

πm

This gives for the hopping rate



Ideal gas particle on a not-so-ideal hill

q1 is the estimated transition state

q* is the true transition state



For this case transition state theory will overestimate the hopping rate
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Transition state theory

   
kA→B t( ) =

q 0( )δ q 0( )− q *( )θ q t( )− q *( )
θ q *−q( )

• One has to know the free energy accurately (MC/MD), using 
umbrella sampling, thermodynamic integration, metadynamics etc.

• Gives only an upper bound to the reaction rate
• Assumptions underlying transition theory should hold: no recrossings

lower value 
because of 
recrossings



Recrossings lower the rate

trajectories that seem to overcome the barrier but in fact bounce back



Bennett-Chandler approach

kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

θ q*−q( )

kA→B t( ) =
q 0( )δ q 0( )− q*( )θ q t( )− q*( )

δ q 0( )− q*( ) ×
δ q 0( )− q*( )
θ q*−q( )

Computational scheme:

1. Determine the probability from the free energy using 
MC or MD, e.g. by umbrella sampling, thermodynamic 
integration, metadynamics or other free energy methods

2. Compute the conditional average from a MD simulation

Jocelyne Vreede will discuss 
FE methods on Thursday



kA→B
TST t( ) =

q 0( )δ q 0( )− q1( )θ q( )
δ q 0( )− q1( ) ×

δ q 0( )− q1( )
θ q1 − q( )

MD simulation to correct the 
transition state result!

kA→B t( ) =
q 0( )δ q 0( )− q1( )θ q t( )− q1( )

δ q 0( )− q1( ) ×
δ q 0( )− q1( )
θ q1 − q( )

Transmission coefficient

κ t( ) ≡
kA→B t( )
kA→B
TST

=
q 0( )δ q 0( )− q1( )θ q t( )− q1( )

0.5 q 0( )
MD simulation:
1. At t=0 q=q1
2. Determine fraction at product state weighted with initial velocity

Bennett-Chandler approach



Example diffusion in zeolite

• Zeolites important class of 
materials

• Diffusion of alkanes in matrix is 
poorly described

• Approach
– molecular simulation of 

alkanes in fixed zeolite frame
– Unified atom FF by Dubbeldam 

et al.

D. Dubbeldam, et al., J. Phys. Chem. B, 108, 12301, 2004



q 0( )δ q 0( )− q*( )θ q t( )− q*( )

Low value of κ

t→∞: θ=1
For both 
q 0( )  and − q 0( )
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Reaction coordinate





Rate based on free energy can be orders of magnitude wrong!
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Barriers on smooth and rough energy landscapes

• # saddle points limited
• determined by potential energy
• use eigenvectors or Hessian to find 

them  

• # saddle points uncountable
• entropy important, many pathways
• determined by free energy
• exploring requires sampling schemes

Dellago logoTM

• Clearly, barrier is most important for rare event
• But how to obtain this barrier?
• In multidimensional energy landscapes barrier is saddle point



Breakdown of BC approach

If the reaction coordinate is not known, the 
wrong order parameter can lead to wrong 
transition states, mechanism and rates

∫ "−"−= )},(exp{ln)( qqEqdkTqW β

kappa can become immeasurable low if the reaction coordinate is 
at the wrong value (i.e. the reaction coordinate is wrongly chosen)



Two ended methods

Methods that take the entire path 
and fix the begin and end point

Many methods proposed:
Action minimization
Nudged elastic band 
String method 
Path metadynamics
Milestoning 
Transition path sampling
....



Transition path sampling

• Sampling by Monte Carlo
• Requires definition of stable states  A,B only
• Results in ensemble of pathways
• Reaction coordinate is a result of simulation not an input
• Allows for calculation of rate constants

Apply when process of interest 
– is a rare event 
– is complex and reaction coordinate is not known

Examples: nucleation, reactions in solution, protein folding

C. Dellago, P.G. Bolhuis, P.L. Geissler

Adv. Chem. Phys. 123, 1 2002

Samples the path ensemble: 
all trajectories that lead over barrier



Path probability density

Path = Sequence of states 

xiDt



Transition path ensemble

hA=1 hB=1



1. Generate new path from old one

2. Accept new path according to detailed balance:

3. Satisfy detailed balance with the Metropolis rule:

Metropolis MC of pathways 



•

Shooting moves
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Shooting algorithm 



Standard TPS algorithm

• take existing path
• choose random time slice t
• change momenta slightly at t
• integrate forward and backward in time to create new path of length L
• accept if A and B are connected, otherwise reject and retain old path
• calculate averages
• repeat



Definition of the stable states



Classical nucleation (1926)

GΔ

0

RR*
Liquid

R

Crystal nucleus

surface bulk

€ 

ΔG = 4πR2γ − 4
3
πR3ρΔµls

g :  surface tension
Dµ : chem. pot difference
r: density

–How does the crystal form?
–What is the structure of the critical nucleus
–Is classical nucleation theory correct?

•What is the barrier?
•Rate constant



Path sampling of nucleation
TIS in NPH ensemble, as density and temperature change 
N=10000, P=5.68 H=1.41 (25 % undercooling)

D. Moroni, P. R. ten Wolde, and P. G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005) 



Sampling paths is only the beginning

• Eugene Wigner: "It is nice to know that the computer understands 
the problem. But I would like to understand it too.”

• Path ensemble needs to be further explored to obtain:
– Rate constants
– Free energy
– Transition state ensembles
– Mechanistic picture
– Reaction coordinate

• Illustrative example: crystal nucleation



Transition interface sampling

T. S. van Erp, D. Moroni and P. G. Bolhuis, J. Chem. Phys. 118 , 7762 (2003)
T. S. van Erp and P. G. Bolhuis, J. Comp. Phys. 205, 157 (2005)

A

B

Overall states in phase space:
directly coming from A

directly coming from B



A
B

= probability that path crossing i for first time after leaving A reaches i+1 before A
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TIS results for 
nucleation

Free energy follows directly 
Moroni, van Erp, Bolhuis, PRE, 2005

Structural analysis?



Committor
(aka p-fold, splitting probability)

A

B
r

Probability that a trajectory initiated at r relaxes into B

L. Onsager, Phys. Rev. 54, 554 (1938). 
M. M. Klosek, B. J. Matkowsky, Z. Schuss, Ber. Bunsenges. Phys. Chem. 95, 331 (1991)
V. Pande, A. Y. Grosberg, T. Tanaka, E. I. Shaknovich, J. Chem. Phys. 108, 334 (1998) 



Transition state ensemble
r is a transition state (TS) if pB(r) = pA(r) =0.5

A

B
1.0

0.5

0.0

A

B
TSE:
Intersections of transition 
pathways with the 
pB=1/2 surface



Committor distributions



Committor distribution

N=243

Clearly, n is not entire story



Structure 
Small and structured

Big and unstructured

Committor analysis gives valuable insight



The OpenPathSampling package
• a python toolkit to run path sampling algorithms 

– works with OpenMM and simple dynamics
– Gromacs, Lammps support
– uses MdTraj, OpenMM, MSMbuilder

• OPS allows flexible  definition of 
– states
– trajectory ensembles
– sets of interfaces
– networks of transition

• OPS provides algorithms for sampling
– TPS 
– TIS (see also T. van Erp’s presentation)
– MSTIS
– RETIS (SRTIS)

• OPS provides analysis tools
– crossing probabilities
– rates, free energies, path densities
– ….

Swenson, Prinz Noe, Chodera, PGB, JCTC, 2019

www.openpathsampling.org





Path sampling of clathrate nucleation
2944 TIP4P/ice + 512 CH4  
NPT 500 bar 280 K, 

Green Spheres – Methane 
Dotted Lines – Water 
Hydrogen Bonds 

Arjun, Berendsen, PGB, PNAS, 2019 

simulation time >1 ms, >2000 trial paths,
acceptance 33%,  >200 decorrelated paths, 
average path length 500 ns 
induction time > 30 kyears



The end


