Computational

Chemistry
Van 't Hoff Institute for Molecular Sciences

MULTISCALE SIMULATIONS OF BIOMOLECULAR SYSTEMS

Coarse-graining

Why? What? How?

Why? What?

Time / [s]

-

$$
5
$$

hat?

Robert J. Oppenheimer

1904-1967
"Father of the atomic bomb" Born-Oppenheimer approximation (1927) electronic motion and nuclear motion in molecules can be separated

Richard Feynman
1918-1988
1965 - Nobel price
development of quantum electrodynamics 1959 - designing miniaturized machines

Paul Dirac

1902-1984
1933 - Nobel price discovery of new productive forms of atomic theory

Erwin Schrödinger

1887-1961
1933 - Nobel price discovery of new productive forms of atomic theory $\mathrm{i} \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$

Niels Bohr

1885-1962
1922 - Nobel price investigation of the structure of atoms and the radiation emanating from them
Developed the model for the atom

Werner Heisenberg 1901-1976 1932 - Nobel price creation of quantum mechanics

$$
\Delta x \Delta p \geq \frac{h}{4 \pi}
$$

Before CG

Martin Karplus

Michael Levitt

Arieh Warshel

Multiscale models
for complex
chemical systems

1940-1950s
Analytical Engine
ENIAC

1966

Charles Babbage
(1791-1871)
Analytical Machine

2020

2013

Density functional theory \& Computational methods in quantum chemistry

AlphaFold \& ML

1930s

$\mathrm{H}, \mathrm{He}, \mathrm{H}_{2}$

Paul Dirac

Molecular orbital theory \& its use in the calculation of electronic structure of molecules
the era of computing chemists, when hundreds if not thousands of chemists will go to the computing machine instead of the laboratory for increasingly many facets of chemical information, is already at hand.

Niels Bohr
Erwin Schrodinger
Werner Heisenberg
.
-2

路

\qquad
-
\qquad

The basics - structural resolution

Ethene in electronic structure level representation (orbitals)

Ethene in all-atom molecular mechanics representation (spheres)

Ethene in coarse-grained representation

Molecular Mechanics Representation

- Atom \rightarrow sphere
- Biomolecular force field: shapes the collection of spheres into things that look like molecules through so-called bonded interactions
- Force field: atom-atom interactions of distal parts through nonbonded interactions.
- Electronic structure is in general coarse-grained out and expected to be captured by the force field.

Wiskunde en Informatica
The basics on one slide (classical simulations)

$$
\begin{aligned}
\mathrm{V} & =\sum_{\text {All Bonds }}^{1} \frac{1}{2} \mathrm{~K}_{b}\left(b-b_{0}\right)^{2}+\sum_{\text {Hate } 1635}^{\frac{1}{2}} \mathrm{~K}_{\theta}\left(\theta-\theta_{0}\right. \\
& +\sum_{\text {Angles }} \mathrm{K}_{\phi}[1-\cos (n \phi+\delta)]
\end{aligned}
$$

$$
\begin{aligned}
& F=m \frac{d^{2} r}{d t^{2}}=m a \\
& F=-\frac{d V(r)}{d r}
\end{aligned}
$$

All Torsion Angles

$$
+\sum \varepsilon\left[\left(r_{0} / r^{12}-2\left(r_{0} / r\right)^{6}\right]\right.
$$

All Nonbonded pairs
Van der Waals 1837
$+\sum_{\text {All partial charges }} 332 q_{j} / r$
Coulomb 1736

over many terms

How does it work?

- The force field is an analytical function of the spatial coordinates of the atomic nuclei
- Several different force fields are commonly available (CHARMM, AMBER, OPLS)

$$
\begin{aligned}
F & =m \frac{d^{2} r}{d t^{2}}=m a \\
F & =-\frac{d V(r)}{d r} \quad \begin{array}{l}
\text { Given the potential, one can numerically } \\
\text { integrate the trajectory of the whole system } \\
\text { as a function of time. }
\end{array} \\
\mathrm{V} & =\mathrm{V}_{\text {bonds }}+\mathrm{V}_{\text {angles }}+\mathrm{V}_{\text {dihedral }}+\mathrm{V}_{\text {nonce } \mathrm{F} \text { is given by the gradient }}
\end{aligned}
$$

正

\square

促

.
\qquad
\qquad

$$
\mathrm{V}=\mathrm{V}_{\mathrm{bonds}}+\mathrm{V}_{\mathrm{angles}}+\mathrm{V}_{\text {dihedrals }}+\mathrm{V}_{\text {nonbonded }}
$$

$$
\mathrm{V}=\mathrm{V}_{\text {bonds }}+\mathrm{V}_{\text {angles }}+\mathrm{V}_{\text {dihedrals }}+\mathrm{V}_{\text {nonbonded }}
$$

the energy needed to stretch a covalent bond between two atoms by Hooke's law for the potential energy stored in a spring

$$
V_{b o n d s}\left(r_{i j}\right)=k_{i j}^{B}\left(r_{i j}-r_{i j}^{0}\right)^{2}
$$

$k_{i j}^{B}$ - constant (bond stiffness)
$r_{i j}^{0}$ - equilibrium distance

the energy needed to bend the angle formed by two covalent bonds

$$
V_{\text {angles }}\left(\theta_{i j k}\right)=k_{i j k}^{\theta}\left(\theta-\theta_{i j k}^{0}\right)^{2}
$$

$$
k_{i j}^{\theta} \text { - constant (angle rigidity) }
$$ $k_{i j}^{\theta}$ - constant (angle rigidity)

$$
\theta_{i j k}^{0} \text { - equilibrium angle width }
$$

the energy needed to bend the dihedral angle formed by three covalent bonds

$$
\begin{aligned}
& V_{\text {dihedrals }}\left(\varphi_{i j k l}\right) \\
& =k_{i j k l}^{\varphi}\left[1+\cos \left(n \varphi_{i j k l}-\delta\right)\right]
\end{aligned}
$$

Faculteit der Natuurwetenschappen,

$$
\mathrm{V}=\mathrm{V}_{\text {bonds }}+\mathrm{V}_{\text {angles }}+\mathrm{V}_{\text {dihedrals }}+\mathrm{V}_{\text {nonbonded }}
$$

for non-covalently bound atoms
$\mathrm{V}_{\mathrm{vdW}}+\mathrm{V}_{\text {electrostatic }}$

$$
\mathrm{V}_{\mathrm{vdW}}+\mathrm{V}_{\text {electrostatic }}
$$

$V_{v d W}=4 \epsilon\left[\left(\frac{\sigma}{r_{i j}}\right)^{12}-2\left(\frac{\sigma}{r_{i j}}\right)^{6}\right]$

ε_{d} - dielectric constant of the surrounding medium

$$
V_{\text {electrostatic }}=\frac{q_{i} q_{j}}{\varepsilon_{d} r_{i j}}
$$ q_{i}, q_{j} - charges

$\mathrm{V}=\mathrm{V}_{\text {bonds }}+\mathrm{V}_{\text {angles }}+\mathrm{V}_{\text {dihedrals }}+\mathrm{V}_{\text {nonbonded }}$

Universiteit van Amsterdam

这

Universiteit van Amsterdam

The dream!

Intermezzo - Why?

CONVEX SUPERCOMPUTER - DATA PROCESSOR (1989, U.S.A)
The Convex Company was founded in 1982, with a view to creating supercomputers for the technical and scientific field. Similar to the Cray computers, the Convex is based on vectors or a system that is parallel with the vector-type registers, thus reducing the bandwidth of the available memory for each processor to a single operation per cycle. Convex invested
massive amounts of money into automatic vectorization techniques.
The Convex C 1 is a vector-type computer with a single processor,
which came out in 1985. The Convex supercomputer runs with the UNIX operating system, the OS version, called Convex OS, and it is equipped with
type C automatic parallelizing compilers and Fortran.

Technical specifications:

Faculteit der Natuurwetenschappen,
Wiskunde en Informatica

How does it work?

Universiteit van Amsterdam

Water models

- Rigid
- Fixed atom positions
- Only non-bonded interactions
- Flexible
- Atoms on "springs"

- Include bond stretching and angle bending
- Reproduce vibration spectra
- Polarizable
- Include specific polarization terms

UNIVERSITEIT VAN AMSTERDAM
Faculteit der Natuurwetenschappen,
Wiskunde en Informatica

Rigid water models

3-site

$$
V=\sum_{\text {pairs }} \underbrace{\frac{A_{L J}}{r_{O-O}^{12}}-\frac{B_{L J}}{r_{O-O}^{6}}}_{\text {LJ for O-O }}+\underbrace{k \frac{q_{i} q_{j}}{r_{i j}}}_{\text {Coulomb }})
$$

r_{O-O} oxygen-oxygen distances $A_{L J}, B_{L J}$ Lennard-Jones parameters $r_{i j}$ distance between charged sites k constant in Coulomb's law

Radial distribution function $\mathrm{g}(\mathrm{r}$)

Universiteit van Amsterdam

Small differences in geometry, charges
but huge differences in water structure and
Small differences in geometry, charges
but huge differences in water structure and dynamics

五

C

Example
Average number of water molecules in the first two solvation shells

	TIP3P	TIP4P	TIP5P	SPC/E
first shell, $<3.4 \AA$	93 ± 8	93 ± 6	100 ± 8	94 ± 7
second shell, $<5.0 \AA$	185 ± 14	182 ± 12	196 ± 15	186 ± 13
long-residency water molecules	0.0 ± 0.0	2.0 ± 1.3	12.8 ± 4.5	3.7 ± 2.7

Water density maps

BUT ...

Universiteit van Amsterdam

$2+2+2+2$ \square

Implicit solvent models

- Represent solvent and counterions as a continuum \rightarrow solvent degrees of freedom are taken into account implicitly
- Solvent $=$ high dielectric medium \& protein $=$ low dielectric region \& spatial charge distribution
- No need of water equilibration
- Much faster than explicit solvent \rightarrow lower computational cost
- Examples
- Poisson-Boltzmann model
- Generalized Born model
- ABSINTH model (explicit ions)

Implicit solvent models

- seek to approximate is the solute potential of mean force, which determines the statistical weight of solute conformations, and which is obtained by averaging over the solvent degrees of freedom.
- the total free energy = the reversible work performed in two successive steps
- the particle is inserted in the solvent with zero atomic partial charges
- the atomic partial charges of the particle are switched from zero to their full values
the total solvation free energy corresponds to a sum of non-polar and
- the atomic partial charges of the particle are switched from zero to their
- the total solvation free energy corresponds to a sum of non-polar and electrostatic contributions

$$
\Delta G_{\text {solv }}=\Delta G_{\text {polar }}+\Delta G_{\text {nonpolar }}
$$

Wiskunde en Informatica

Implicit solvent models

$$
\Delta \mathrm{G}_{\text {solv }}=\underset{\substack{\text { polar } \\ \\ \\ \\ \\ \text { Electrostatics } \\ \text { Poisson-Boltzmann }}}{\Delta \mathrm{G}_{\text {nonpolar }}} \underset{\downarrow}{\Delta \mathrm{G}_{\text {cav }}+\Delta \mathrm{G}_{\mathrm{vdW}}}
$$

$\Delta \mathrm{G}_{\text {cav }}$ - cavity creation within the solvent
$\Delta \mathrm{G}_{\mathrm{vdW}}$ - embedding of the particle into the cavity

Solute shape cavity of vacuum is introduced into the solvent

Solvent molecules reorient and polarize in response to the solute charge density

Solute charge density is placed in the solute cavity

Solute polarizes in response
to solvent polarization

In explicit solvent 1.6 M atoms

An example
 NIVERSITEIT VAN AMSTERDAM
 23
 \qquad

231

In implicit solvent
Glycans
$\Delta t=2 \mathrm{fs}$

$+$
,
(

都

$$
\Delta \mathrm{t}=5 \mathrm{fs}
$$

道 Universiterit van Amsterdam
Faculteit der Natuurwetenschappen,

Membrane-interaction mechanisms

PrPC

POM1

POM6

it Natuurwetenschappen,
Wiskunde en Informatica

Cows, Langevin \& Brown - Can we do more?

Solvent molecules
<collisions solvent > fluctuations around ξ
(thermal noise of solvent molecules)

$\rightarrow \quad$ friction, ξ stochastic Markovian process

Langevin \& Brown

$$
\begin{aligned}
& \boldsymbol{v}=\frac{\mathrm{d} \boldsymbol{r}}{\mathrm{dt}} \\
& m \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{dt}}=-\boldsymbol{F}_{D}+\boldsymbol{F}_{B}
\end{aligned}
$$

From hydrodynamics $\quad \boldsymbol{F}_{D}=6 \pi \eta \boldsymbol{v} r$

$$
m \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{dt}}=-6 \pi \eta \boldsymbol{v} r+\boldsymbol{F}_{B}
$$

Friction force Random force

$$
\xi=6 \pi \eta r / m
$$

Wiskunde en Informatica
$\underset{\mathrm{d} \mathbf{v}}{\text { Langevin dynamics }}$

$$
\begin{gather*}
\left\langle\mathbf{F}_{B}(t)\right\rangle=0 \quad \text { Noise produces no net force } \\
\left\langle\mathbf{F}_{B}(t) \cdot \mathbf{F}_{B}\left(t^{\prime}\right)\right\rangle=2 k_{B} T \xi \delta\left(t-t^{\prime}\right) \\
\text { Fluctuation-dissipation theorem } \\
\text { Balance between "dead" and "alive" }
\end{gather*}
$$

$$
\begin{aligned} m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{dt}}= & -6 \pi \eta \mathbf{v} r+\mathbf{F}_{B} \\ \rightarrow & \mathbf{v}(\mathrm{t})=\mathbf{v}_{0} \mathrm{e}^{-\xi t / m}+\int_{0}^{t} \mathrm{~d} \tau \mathrm{e}^{-\xi(t-\tau) / m} \frac{1}{m} \mathbf{F}_{B}(\tau) \\ & \mathbf{v}^{2}(t \rightarrow \infty) \approx 0 \text { false } \end{aligned}
$$
 $$
x-2-1
$$

L
(

δ-Dirac function

No correlation between t and t^{\prime} due to time scale separation (short lived collisions)
20
(shortived collisions)
an
\square

Langevin dynamics

$$
m \ddot{\mathbf{r}}=-\xi \dot{\mathbf{r}}+\mathbf{F}(\mathbf{r})+\sigma \mathbf{R} \quad \sigma=2 k_{B} T \xi
$$

Reduced degrees of freedom
Focus on the important contributions

Keeps the contributions to the dynamics of the system

Long chain molecules
Barrier crossing motions

保

- No inertia (high friction)

-

Abstract

f


```
    *
```

$$
\left.\begin{array}{ll}
m \ddot{\mathbf{r}}=-\xi \dot{\mathbf{r}}+\mathbf{F}(\mathbf{r})+\sigma \mathbf{R} \quad \sigma=2 k_{B} T \\
<m \ddot{\mathbf{r}}>_{\Delta t} \cong 0
\end{array}\right\} \Delta \mathbf{r}=\frac{\mathbf{F}}{\xi}+\sqrt{\frac{2 k_{B} T \Delta t}{\xi}} \mathbf{R}
$$

F
位

．

都
\square
 2

In practice

$$
\begin{aligned}
& \mathbf{r}(t+\delta t)-\mathbf{r}(t)=\quad \boldsymbol{\mu}^{\boldsymbol{t}} \quad \mathbf{F} \boldsymbol{\delta} \boldsymbol{t}+ \\
& \sqrt{\boldsymbol{\mu}^{t}} \boldsymbol{\Theta}^{\mathrm{t}}(t) \sqrt{2 k_{B} T \delta t}
\end{aligned}
$$

$$
\begin{aligned}
& \left.<(\mathbf{r}(t)-\mathbf{r}(0))^{2}\right\rangle=6 D_{t} \delta t \\
& \Theta_{\alpha}^{i}\left\{\begin{array}{c}
\left\langle\Theta_{\alpha}^{i}(t)\right\rangle=0 \\
\left\langle\Theta_{\alpha}^{i}(t) \Theta_{\beta}^{i}\left(t^{\prime}\right)\right\rangle=\delta_{\alpha \beta} \delta_{i j} \delta_{t t^{\prime}}
\end{array}\right.
\end{aligned}
$$

Faculteit der Natuurwetenschappen,
Wiskunde en Informatica

In practice

$$
\mathbf{q}(t+\delta t)-\mathbf{q}(t)=\mathbf{A} .
$$

入

$\mathbf{q}(t+\delta t)-\mathbf{q}(t)=\mathbf{B} \cdot \boldsymbol{\mu}^{\mathrm{r}} \cdot \mathbf{A}^{\mathrm{T}} \mathbf{T} \boldsymbol{\delta} \boldsymbol{t}+\mathbf{B} \sqrt{\boldsymbol{\mu}^{\mathrm{r}}} \boldsymbol{\Theta}^{\mathrm{r}}(t) \sqrt{2 k_{B} T \delta t}+\lambda \mathbf{q}$

$$
\begin{aligned}
& q(t+\boldsymbol{\delta} t)=1 \\
& \boldsymbol{\lambda}^{2}+2 \boldsymbol{\lambda} \mathbf{q}(t) \cdot \tilde{\mathbf{q}}(t+d t)+\tilde{\mathbf{q}}^{2}(t+\boldsymbol{\delta} t)=1
\end{aligned}
$$

Intermezzo - the ideal gas and beyond

Janus particles

Striped nanospheres

Striped nanorods

DNA patchy particles

DNA patches

An example - proteins as patchy particles ()

www.endocytosis.org

The model clathrin

28 Mini coat

32 Sweet potato

36 D6 barrel

36 Tennis ball

37 Big apple

20 Dice

24 Brussel

26 Pumpkin

28 Mini coat

32 Sweet
potato (L)

32 Sweet potato (R)

38 Big
 38 Big
c

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen,
Wiskunde en Informatica
The model

$5025 \mathrm{AA} \rightarrow 645 \mathrm{kDa}$

a PIECE!!!!

Atomistically impossible
\rightarrow coarse graining

Wiskunde en Informatica
Coarse-grained model: one protein $=1$ rigid particle

Coarse-grained model: one protein = rigid particle
Coarse-grained model: one protein = rigid particle

Terminal Linker
domain
s.
\qquad

[^0]\qquad
\qquad
(

What do we need?

- Friction
- Interaction potential
- A good cluster

$$
\begin{aligned}
\mathbf{r}(t+\delta t)-\mathbf{r}(t)= & \mathbf{A} \cdot \boldsymbol{\mu}^{\boldsymbol{t}} \cdot \mathbf{A}^{\mathrm{T}} \mathbf{F} \boldsymbol{\delta} \boldsymbol{t}+ \\
& \mathbf{A} \cdot \sqrt{\boldsymbol{\mu}^{t}} \boldsymbol{\Theta}^{\mathrm{t}}(t) \sqrt{2 k_{B} T \delta t}
\end{aligned}
$$

（

Diffusion

，

	HYDRO＋＋
	Input
M．W．	645 kDa
η	0.01 Poise
χ	101°
T	$20^{\circ} \mathrm{C}$
	Output
D^{t}	$1.22 \cdot 10^{-7} \mathrm{~cm}^{2} / \mathrm{s}^{* *}$
D^{r}	

	HYDRO＋＋
	Input
M．W．	645 kDa
η	0.01 Poise
χ	101°
T	$20^{\circ} \mathrm{C}$
	Output
D^{t}	$1.22 \cdot 10^{-7} \mathrm{~cm}^{2} / \mathrm{s}^{* *}$
D^{r}	

Input

$$
\begin{equation*}
\text { Diffusion matrices } \quad D=\frac{k_{B} T}{\xi} \tag{保}
\end{equation*}
$$

號 E － $-$ －
 ，

[^1]
The potential

$$
\Phi=-\varepsilon \cdot f(r)
$$

Wiskunde en Informatica

The potential

- interaction between leg segments

$$
\Phi=-\varepsilon \cdot f(r)
$$

- asymmetric binding

- Rotational asymmetry

N particles	200
c	$100 \mu \mathrm{~g} / \mathrm{ml}$
T	$\mathrm{Temp}=20^{\circ} \mathrm{C}$
$\delta \mathrm{t}$	10 ns
timescale	4 s
box length	$1 \mu \mathrm{~m}$

Wiskunde en Informatica

Universiteit van Amsterdam \qquad
路

UNIVERSITEIT VAN AMSTERDAM
Faculteit der Natuurwetenschappen,
Wiskunde en Informatica

How to CG? What is my research question?

(a)

(c)

Growth phase:

- Primary nucleation
- Fibril elongation
- Fragmentation
- Secondary nucleatio
- Oligomers
- Free monomers
- Misfolded aggregates
- Fibril extension

Saturation phase:

- Mature fibril

Aggregate formation

STERDAM

Aggregates $=$ Oligomers

Released toxic oligomers

Backward oligomers

What are the aggregation mechanisms?

[^2]
Off-pathway
 Off-pathway oligomers

-

-

```
                                    #
```

```
                    *
```

```
-
```號都

tes = Oiterniners
\(\square\)

UNIVERSITEIT VAN AMSTERDAM
Wiskunde en Informatica

\section*{What is my research question? Aggregation}
(a)

(c)

atuurwetenschappen,
iskunde en Informatica

\section*{Aggregates = oligomers}

\[
\Phi=\sum_{i, j} \Phi_{e x . v}\left(r_{i j}\right)+\sum_{i, j} \Phi_{a t t r}\left(r_{i j}\right)+\sum_{i, j} \Phi_{a t t r}\left(d_{i j}, \widehat{\boldsymbol{u}}_{i,} \widehat{\boldsymbol{u}}_{j}\right)
\]

\author{
UNiversiteit van Amsterdam
}

Faculteit der Natuurwetenschappen,
Wiskunde en Informatica

\section*{Single-strand protofilaments}

和

\section*{Single－strand mechanisms}

which
\(\qquad\)

\footnotetext{
路
}

\[
\begin{equation*}
0^{2} \tag{正}
\end{equation*}
\]

．

.

break \＆self－fold

separate
－Driven by specific and non－specific interactions
－The protofilaments are highly dynamic \＆flexible

Monomer addition

 ？
rest
－Driven

The protofitanens are highly dynamic \＆flexible

\[
e^{2}
\]
\(\square\)

\section*{Multi-strand protofilaments}

- short
- transient species - on-pathway
- more rigid than single protofilament precursors

Facultit der Natuurwetenschappen,
Wiskunde en Informatica

\section*{Multi-strand mechanisms}
- via spherical oligomers
- driven by non-specific interactions
- stabilized by specific interactions

- via breakage of single filaments
- rearrangements

- via tip merging of species
- long rearrangements

rearrange

\section*{Spherical oligomers \＆fibrils \\ iskunde en Informatica \\ oligomers \＆fibrils}

\(\qquad\)
\(\square\)都 正
 正

\section*{Different type of coarse graining}

1
60-65
90-95
\begin{tabular}{|c|c|c|}
\hline N-terminus & NAC region & C-terminus \\
\hline \begin{tabular}{l}
- amphipathic (both hydrophilic and lipophilic) \\
- \(\alpha\)-helix, disordered
\end{tabular} & \begin{tabular}{l}
- hydrophobic \\
- building block for \(\alpha\)-synuclein aggregates \\
- \(\alpha\)-helix, \(\beta\)-sheets, disordered
\end{tabular} & \begin{tabular}{l}
- highly acidic \\
- negatively charged \\
- disordered
\end{tabular} \\
\hline
\end{tabular}

\section*{Question: Fibrillar growth}

**Woerdehoff et al. JMB 427:1428-1435 (2015)
risk
NIVERSITEIT VA

Universiteit van Amsterdam

位位wetenschappen,
Wiskunde en Informatica
```


[^0]:    - Slightly curved structure

[^1]:    Wiskunde en Informatica

[^2]:    - 

