Computational Chemistry

Van 't Hoff Institute for Molecular Sciences University of Amsterdam

Coarse-graining

Why? What? How?

1

Why? What?

Robert J. Oppenheimer 1904 – 1967 "Father of the atomic bomb" Born-Oppenheimer approximation (1927) *electronic motion and nuclear motion in molecules can be separated*

Richard Feynman 1918 – 1988 1965 – Nobel price *development of quantum electrodynamics* 1959 - designing miniaturized machines

Paul Dirac 1902 – 1984 1933 – Nobel price *discovery of new productive forms of atomic theory*

Niels Bohr 1885 – 1962 1922 – Nobel price *investigation of the structure of atoms and the radiation emanating from them* Developed the model for the atom

Erwin Schrödinger 1887 – 1961

1933 – Nobel price *discovery of new* productive forms of atomic theory

Werner Heisenberg 1901 - 1976 1932 - Nobel price *creation of quantum mechanics* $\Delta x \Delta p \ge \frac{h}{4\pi}$

Before CG

Martin Karplus

Michael Levitt

Arieh Warshel

Molecular orbital theory & its use in the calculation of electronic structure of molecules

the era of computing chemists, when hundreds if not thousands of chemists will go to the computing machine instead of the laboratory for increasingly many facets of chemical information, is already at hand.

Multiscale models

chemical systems

1998

for complex

1940-1950s Analytical Engine **ENIAC**

Niels Bohr Erwin Schrodinger Paul Dirac

2020

AlphaFold & ML

2013

1966

Density functional theory & Computational methods in quantum chemistry

John Pople

Howard Aiken

Norbert Wiener

Charles Babbage (1791 - 1871)Analytical Machine

1930s H, He, H_2

The basics – structural resolution

 σ bond (single bond)

Ethene in electronic structure level representation (orbitals)

Ethene in all-atom molecular mechanics representation (spheres) Ethene in coarse-grained representation

Molecular Mechanics Representation

- Atom \rightarrow sphere
- Biomolecular force field: shapes the collection of spheres into things that look like molecules through so-called **bonded** interactions
- Force field: atom-atom interactions of distal parts through **nonbonded** interactions.
- Electronic structure is in general coarse-grained out and expected to be captured by the force field.

How does it work?

- The force field is an analytical function of the spatial coordinates of the atomic nuclei
- Several different force fields are commonly available (CHARMM, AMBER, OPLS)

$$F=mrac{d^2r}{dt^2}=ma$$
 Given integrates as a full $F=-rac{dV(r)}{dr}$ The form of the second sec

Given the potential, one can numerically integrate the trajectory of the whole system as a function of time.

The force F is given by the gradient of the potential V(r).

$$V = V_{bonds} + V_{angles} + V_{dihedrals} + V_{nonbonded}$$

 $V = V_{bonds} + V_{angles} + V_{dihedrals} + V_{nonbonded}$

the energy needed to **stretch** a covalent bond between two atoms by Hooke's law for the potential energy stored in a spring

the energy needed to **bend** the angle formed by **two** covalent bonds

2

$$Y_{angles}(\theta_{ijk}) = k_{ijk}^{\theta}(\theta - \theta_{ijk}^{0})$$

$$k_{ij}^{\theta} - \text{constant (angle rigidity)}$$

$$\theta_{ijk}^{0} - \text{equilibrium angle width}$$

$$\theta_{ijk}^{\theta} = \theta_{ijk}^{\theta}$$

 θ_{iik}^0

 $heta_{_{ijk}}$

Ы

the energy needed to **bend** the dihedral angle formed by **three** covalent bonds

```
V_{dihedrals}(\varphi_{ijkl})
=k_{iikl}^{\varphi} \left[1 + \cos(n\varphi_{ijkl} - \delta)\right]
                         {\cal Q}^{arphi_{ijkl}}
      Energy
                                                       10
                 Dihedral angle
```

$$V = V_{bonds} + V_{angles} + V_{dihedrals} + V_{nonbonded}$$

for non-covalently bound atoms

 $V_{vdW} + V_{electrostatic}$

$$V_{electrostatic} = \frac{q_i q_j}{\varepsilon_d r_{ij}}$$

 ε_d - dielectric constant of the surrounding medium q_i , q_j - charges

The dream!

Intermezzo – Why?

CONVEX SUPERCOMPUTER - DATA PROCESSOR 622122 (1989, U.S.A)

The Convex Company was founded in 1982, with a view to creating supercomputers for the technical and scientific field. Similar to the Cray computers, the Convex is based on vectors or a system that is parallel with the vector-type registers, thus reducing the bandwidth of the available memory for each processor to a single operation per cycle. Convex invested massive amounts of money into automatic vectorization techniques.

The Convex C1 is a vector-type computer with a single processor, which came out in 1985. The Convex supercomputer runs with the UNIX operating system, the OS version, called Convex OS, and it is equipped with type C automatic parallelizing compilers and Fortran.

Technical specifications:

Hardware: C120 Processor built on 64 bytes with integrated scalar functions and vectorial functions. Memory system: 4 GB virtual memory and 1 GB physical memory.

Full system	76,832 cores + 144 GPUs: 6.1 Pflop/s (peak performance)
Thin nodes (AMD Rome 7H12)	64,512 cores: 2.69 Pflop/s
Fat nodes (AMD Rome 7H12)	9,216 cores: 394 Tflop/s; also 6.4 TB of NVMe local storage
GPGPU nodes (Intel IceLake + 4x Nvidia A100)	2,592 cores + 144 GPUs: 3.0 Pflop/s
High-memory nodes (AMD Rome 7H12)	512 cores: 22 Tflop/s; 4/8 TB per node
Memory	245 TB memory (CPU + GPU/HBM)
Disk space	720 TB home file systems, 12.4 PB scratch and project; 200TB NVMe parallel filesystem

nationale supercomput

Snellius

De

How does it work?

Water models

- Rigid
 - Fixed atom positions
 - Only non-bonded interactions
- Flexible
 - Atoms on "springs"
 - Include bond stretching and angle bending
 - Reproduce vibration spectra
- Polarizable
 - Include specific polarization terms

Rigid water models

4-site

 r_{ij} distance between charged sites k constant in Coulomb's law

Radial distribution function g(r)

Small differences in geometry, charges but huge differences in water structure and dynamics

Example

Average number of water molecules in the first two solvation shells

	TIP3P	TIP4P	TIP5P	SPC/E
first shell, <3.4 Å	93±8	93±6	100 ± 8	94±7
second shell, <5.0 Å	185±14	182±12	196±15	186 ± 13
long-residency water molecules	0.0 ± 0.0	2.0 ± 1.3	12.8 ± 4.5	3.7 ± 2.7

BUT ...

Implicit water as dielectric continuum can be so much faster

Implicit solvent models

- Represent solvent and counterions as a continuum → solvent degrees of freedom are taken into account implicitly
- Solvent = high dielectric medium & protein = low dielectric region & spatial charge distribution
- No need of water equilibration
- Much faster than explicit solvent \rightarrow lower computational cost
- Examples
 - Poisson-Boltzmann model
 - Generalized Born model
 - ABSINTH model (explicit ions)

Implicit solvent models

- seek to approximate is the solute potential of mean force, which determines the statistical weight of solute conformations, and which is obtained by averaging over the solvent degrees of freedom.
- the total free energy = the reversible work performed in two successive steps
 - the particle is inserted in the solvent with zero atomic partial charges
 - the atomic partial charges of the particle are switched from zero to their full values
- the total solvation free energy corresponds to a sum of non-polar and electrostatic contributions

 $\Delta \mathbf{G}_{\text{solv}} = \Delta \mathbf{G}_{\text{polar}} + \Delta \mathbf{G}_{\text{nonpolar}}$

Implicit solvent models

 ΔG_{cav} – cavity creation within the solvent ΔG_{vdW} – embedding of the particle into the cavity

Solute shape cavity of vacuum is introduced into the solvent

Solvent molecules reorient and polarize in response to the solute charge density

Solute charge density is placed in the solute cavity Solute polarizes in response to solvent polarization

In **explicit solvent** 1.6M atoms $\Delta t = 2$ fs

In **implicit solvent** $\Delta t = 5$ fs

Membrane-interaction mechanismsPrPCPOM1

POM6

Cows, Langevin & Brown - Can we do more?

Solvent molecules

< collisions solvent > fluctuations around ξ

(thermal noise of solvent molecules)

stochastic force

friction, ξ stochastic Markovian process

Langevin & Brown

$$\boldsymbol{v} = \frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}$$
$$m\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\boldsymbol{F}_D + \boldsymbol{F}_B$$

From hydrodynamics $F_D = 6\pi\eta\nu r$

$$m\frac{\mathrm{d}\boldsymbol{\nu}}{\mathrm{dt}} = -6\pi\eta\boldsymbol{\nu}r + \boldsymbol{F}_B$$

Friction force Random force

 $\xi = 6\pi\eta r/m$

Langevin dynamics $m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -6\pi\eta\mathbf{v}r + \mathbf{F}_{B}$ $\mathbf{v}(t) = \mathbf{v}_0 e^{-\xi t/m} + \int_0^t d\tau e^{-\xi(t-\tau)/m} \frac{1}{m} \mathbf{F}_B(\tau)$ $\mathbf{v}^2(t \rightarrow \infty) \approx 0$ false At EQUILIBRIUM: $\langle v^2 \rangle_{eq} = \frac{kT}{m}$

 $\langle \mathbf{F}_{B}(t) \rangle = 0$ Noise produces no net force $\langle \mathbf{F}_{B}(t) \cdot \mathbf{F}_{B}(t') \rangle = 2k_{B}T\xi\delta(t-t')$

Fluctuation-dissipation theorem

Balance between "dead" and "alive"

δ-Dirac function No correlation between t and t' due to time scale separation (short lived collisions)

Langevin dynamics

$$m\ddot{\mathbf{r}} = -\xi\dot{\mathbf{r}} + \mathbf{F}(\mathbf{r}) + \sigma\mathbf{R} \qquad \sigma = 2k_B T\xi$$

Reduced degrees of freedom

Focus on the important contributions

Keeps the contributions to the dynamics of the system

- → Long chain molecules
- Barrier crossing motions

Brownian dynamics

= overdamped Langevin (a=0)- No inertia (high friction)

In practice

Translational Brownian Dynamics

$$\mathbf{r}(t+\delta t) - \mathbf{r}(t) = \mathbf{\mu}^{t} \mathbf{F} \delta t + \sqrt{\mathbf{\mu}^{t}} \Theta^{t}(t) \sqrt{2k_{B}T\delta t}$$

$$\int_{\alpha}^{4} \frac{\langle \Theta_{\alpha}^{i}(t) \rangle = 0}{\langle \Theta_{\alpha}^{i}(t) \Theta_{\beta}^{j}(t) \rangle = \delta_{\alpha\beta} \delta_{ij} \delta_{it}}$$

$$\Theta_{\alpha}^{i} \begin{cases} \langle \Theta_{\alpha}^{i}(t) \Theta_{\beta}^{j}(t) \rangle = \delta_{\alpha\beta} \delta_{ij} \delta_{it} \\ \langle \Theta_{\alpha}^{i}(t) \Theta_{\beta}^{j}(t) \rangle = \delta_{\alpha\beta} \delta_{ij} \delta_{it} \\ \langle \Theta_{\alpha}^{i}(t) \Theta_{\beta}^{j}(t) \rangle = \delta_{\alpha\beta} \delta_{ij} \delta_{it} \end{cases}$$

 $\langle (\mathbf{r}(t) - \mathbf{r}(0))^2 \rangle = 6D_t \delta t$

I.M. Ilie, W.J. Briels & W.K. den Otter, *J. Chem. Phys.*, **142**, 114103 (2015) I.M. Ilie, W.K. den Otter & W.J. Briels, *JCP*, **144**, 085103 (2016)

Rotational Brownian Dynamics

$$\mathbf{q}(t+\delta t) - \mathbf{q}(t) = \mathbf{B} \cdot \mathbf{\mu}^{\mathrm{r}} \cdot \mathbf{A}^{\mathrm{T}} \mathbf{T} \boldsymbol{\delta} t + \mathbf{B} \sqrt{\mathbf{\mu}^{\mathrm{r}}} \mathbf{\Theta}^{\mathrm{r}}(t) \sqrt{2k_{B}T\delta t} + \lambda \mathbf{q}$$

 $q(t + \delta t) = 1$ $\lambda^{2} + 2\lambda \mathbf{q}(t) \cdot \tilde{\mathbf{q}}(t + dt) + \tilde{\mathbf{q}}^{2}(t + \delta t) = 1$

I.M. Ilie, W.J. Briels & W.K. den Otter, *J. Chem. Phys.*, **142**, 114103 (2015) I.M. Ilie, W.K. den Otter & W.J. Briels, *JCP*, **144**, 085103 (2016)

Intermezzo – the ideal gas and beyond

Striped nanorods

DNA patchy particles

DNA patches

An example – proteins as patchy particles ©

www.endocytosis.org

The model clathrin

200 Å

The model

5025 AA → 645 kDa

a PIECE!!!!

Atomistically impossible → coarse graining

Coarse-grained model: one protein = 1 rigid particle

• Slightly curved structure

What do we need?

- Friction
- Interaction potential
- A good cluster

$$\mathbf{r}(t + \delta t) - \mathbf{r}(t) = \mathbf{A} \cdot \boldsymbol{\mu}^{t} \cdot \mathbf{A}^{\mathrm{T}} \mathbf{F} \delta t + \mathbf{A}^{\mathrm{T}} \mathbf{F} \mathbf{\delta} t + \mathbf{A}^{\mathrm{T}} \mathbf{\Theta}^{\mathrm{t}}(t) \sqrt{2k_{B}T\delta t}$$

Diffusion

^{*}J. García de la Torre, D. Amorós, A. Ortega, *Eur. Biophys. J.* **39**, 381-388 (2010). ^{**} T. Yoshimura, K. Kameyana, S. Maezwa and T.Takagio, *Biochemistry* **20**, 4528 (1991).

The potential

- interaction between leg segments

- Attraction between anti-parallel legs
 - Repulsion between parallel legs

The potential

- interaction between leg segments

$$\Phi = -\varepsilon \cdot f(r)$$

- asymmetric binding

• Rotational asymmetry

N particles	200
c	100 µg/ml
Т	Temp = $20 \degree C$
δt	10 ns
timescale	4 s
box length	1 μm

Another example – a sofisticated protein

IDP = intrinsically disordered = little or no structure in its native state

1	60-65 90-		95	140
	N-terminus	NAC region	C-terminus	
_	amphipathic (both hydrophilic and lipophilic) α-helix, disordered	 hydrophobic building block for α-synuclein aggregates α-helix, β-sheets, disordered 	highly acidicnegatively chargeddisordered	

How to CG? What is my research question?

Aggregate formation

- Lag phase:
- Free monomers
- Misfolded aggregates
- Oligomers
- Primary nucleation

Growth phase:

- Fibril elongation
- Fragmentation
- Secondary nucleation
- Fibril extension

Saturation phase:

- Mature fibril

time

What are the aggregation mechanisms?

What is my research question? <u>Aggregation</u>

Aggregates = oligomers

Dr. Simone Ruggeri

Bernadette Mayer

Manuscript in preparation

Single-strand protofilaments

Dr. Simone Ruggeri

Bernadette Mayer

Single-strand mechanisms

- Driven by specific and non-specific interactions
- The protofilaments are highly dynamic & flexible

Multi-strand protofilaments

Dr. Simone Ruggeri

Bernadette Mayer

Double strand protofilaments

- short
- transient species *on-pathway*
- more rigid than single protofilament precursors

Higher order joining protofilaments

Multi-strand mechanisms

Spherical oligomers & fibrils

IMI et al., J. Chem. Phys., 2016, 144, 085103

Different type of coarse graining

1	60	-65 90-	95	140
	N-terminus	NAC region	C-terminus	
-	amphipathic (both hydrophilic and lipophilic) α-helix, disordered	 hydrophobic building block for α-synuclein aggregates α-helix, β-sheets, disordered 	 highly acidic negatively charged disordered 	

Question: Fibrillar growth

Woerdehoff et al. JMB **427:1428-1435 (2015)

